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Pricing Insurance for natural disasters is challenging because the majority of losses are low frequency, 

high severity.  The entire of industry loss data is still not sufficiently credible, so catastrophe models 

attempt to bridge this gap by simulating tens of thousands of potential events.  The output from these 

models, as well as old-fashioned COPE (construction, occupancy type, etc) classification of exposures, 

provide underwriters with information to price risks.  This study explores the relationship between 

premiums and modelled losses. 

Catastrophe models output two important pieces of information on a risk – Average Annual Loss (AAL), 

and Uncertainty (Standard Deviation of Losses, hereby abbreviated SD).  This study applied Regression 

Analysis to financial information on 3800 bound accounts (disguised by multiplicative factors to protect 

privacy).  AAL and SD serve as quantitative explanatory variables, peril serves as a qualitative 

explanatory variable, and premium serves as the response variable (i.e. the values we aim to predict). 

First, the disguised data was transformed for the sake of a better match with the assumptions of 

classical statistical models, namely transforming skewness and nonlinearity.  The untransformed data 

suggested the need to descend the ladder of powers: 

Hinges: Premium AAL SD 

Median 34,206 5,613 143,564 

25th percentile 15,048 1,577 44,993 

75th percentile 71,545 16,647 345,443 

(MU – Median)/(Median – ML) 1.949 2.734 2.048 

 

The ratio of the largest to smallest values for each variable are sufficiently large, and all values are 

positive, so there is no need to add a start to the data. 

The following transformations achieved the desired corrections, becoming more normal as indicated by 

the proportion (MU – Median)/(Median – ML) being close to 1. 

Hinges: ln(Premium) AAL^(1/5) SD^(1/3) 

Median 10.440 5.621 52.362 

25th percentile 9.619 4.361 35.567 

75th percentile 11.178 6.988 70.191 

(MU – Median)/(Median – ML) 0.899 1.084 1.062 

 

 



The data are fit to four different regression models. 

1) ln(Premium) = Intercept + B1*AAL^(1/5) 

This is the simple-regression model.  The Regression function in Microsoft Excel’s Data Analysis package 

produces this output: 

 

The statistic “R Square” is the Coefficient of Determination.  It indicates what portion of the variation in 

premium is explained by the regression.  The value of ~0.6 indicates good but not great predictive power 

for the model. 

Regarding the calculations in Excel’s ANOVA output:  A regression can be decomposed into the 

explained and unexplained portions as TSS = RegSS + RSS, defined as: 

TSS = total sum of squares 

RegSS = regression sum of squares 

RSS = residual sum of squares 

R Square = RegSS/TSS 

Residuals represent the difference between observed value of the response variable and its regression-

fitted value of the.  The aim of classical regression analysis is to minimize RSS and maximize RegSS. 

MS stands for “mean square”, which is the sum of squares (SS) divided by the degrees of freedom (df). 

  



Using the multiple-regression model: 

2) ln(Premium) = Intercept + B1*AAL^(1/5) + B2*SD^(1/3) 

 

This model suggests a better fit than the first model, as evidenced by the higher value of R Square.  The 

value “Multiple R” is the correlation coefficient.  It is the square root of R Square, and measures the 

strength of a linear relationship.  That it is approaching the value 1 indicates a strong positive 

relationship.  (Zero would indicate no relationship, and approaching the value -1 would indicate a strong 

negative relationship.) 

The statistic Adjusted R Square accounts for degrees of freedom and gives a more realistic indication of 

goodness of fit, since R Square could increase even if adding spurious explanatory variables. 

Adjusted R Square = 1 – [RSS/(n-k-1)]/[TSS/(n-1)] 

Incremental F-tests between models (for nested models, and adhering to the principal of marginality) 

test the significance of the slope coefficients.  The high p-value for the coefficient B1 is concerning.  It 

represents the chance that the value of B1 is as observed, or more extreme, due to random fluctuations.  

A low p-value would indicate that the coefficient is significant. 

An additional problem with this model is collinearity between the two explanatory variables.  Excel 

returns CORREL(AAL, SD) = 0.86.  For this multiple-regression model, the variance of slope coefficients is 

increased by a variance-inflation factor (VIF), which in this case is 7.12.  The square root of this value 

comes to 2.67, suggesting that this collinearity cuts the precision of the coefficient estimates by more 

than half. 

  



3) ln(Premium) = Intercept + B1*AAL^(1/5) + B2*SD^(1/3) + γ1*peril1 + γ2*peril2 

 

This model makes use of polytomous dummy regressors for peril.  Since there are three types of perils 

(A, B, and C), two dummy variables get coded as such: 

 

This model provides very little additional goodness of fit (as measured by Adjusted R Square) compared 

with model #2.  Additionally, the high p-value for the coefficient Peril2 directs us not to reject the null 

hypothesis that γ1 = 0.  In other words, γ1 is not statistically significant at levels of alpha ≈ 15% or less.  

Alpha signifies the chance of a Type I error, which is rejecting the null hypothesis when it’s true. 

  



4) ln(Premium) = Intercept + B1*AAL^(1/5) + B2*SD^(1/3) + γ1*peril1 + γ2*peril2  + 

δ11*(AAL^(1/5)*peril1) + δ12*(AAL^(1/5)*peril2) + δ21 *(SD^(1/3) *peril1) + δ22*(SD^(1/3) 

*peril2)  

This model contains interaction regressors.  It states that the effects of AAL and SD both vary by peril.  In 

other words, the regressions surfaces for each peril are not parallel. 

 

Model #4 satisfactorily has the highest value of Adjusted R Square, while also having low p-values for all 

its coefficients.  However, the implication that AAL has a negative effect on premium is nonsensical, so 

this model is rejected. 

For all these models, the omnibus null hypothesis that all coefficients are equal to zero is easily rejected 

per the high F value.  The value of nil for Significance of F means that there’s essential no probability 

that the coefficients’ values are due to chance alone. 

Thus the accepted model is: 

ln(Premium) = 7.96 + 0.42*AAL^(1/5) 

These models actually include an error term as well, on the right: εi.  The linearity assumption is that this 

term’s expected value is zero.  Additionally, the error term is assumed to have constant variance, and be 

independent from data point to data point.  If an important explanatory variable (i.e. one structurally 

related to, i.e. a causative factor of, the response variable) is not captured in a statistical model, then it 

is absorbed into the error term.  This introduces bias into the model, and the assumptions of classical 

least-squares estimation are compromised.  Additional causative categorical variables such as geography 

or construction could be explored; however, the catastrophe modelling software accounts for these 

when simulating losses.  A key variable, portfolio aggregation at the time of quoting, is not easily 

available and thus we would likely violate another key assumption of regression analysis—that the 

observed values for the explanatory variables are measured without error. 



It’s worth noting that many in the catastrophe insurance industry express pricing in terms of a basic 

average annual loss ratio (i.e. premium = loss / [target AALR]), akin to model #1.  Though the chosen 

model is not the best-fitting, it is simple to apply and understand in the field. 

Due to the infrequency of catastrophe events, market softening can be prolonged.  This exerts 

downward pressure on pricing, a temporal effect.  Over the course of a year, brokers could recite the 

depression of the target AALR that the market bears.  Perhaps we can revisit this subject the in the 

NEAA Time Series course, which deals with observations that are not independently distributed.  In fact, 

the author recently fit small datasets from the Florida windstorm market.  Comparing 2011 with 2015 

data, continued softening has depressed the basic market pricing model from 3*AAL to 2*AAL.  The 

regression fit for the 2015 data is not as ideal (lower R square), presumably because the data set is not 

yet complete.  Logarithmic transformation of the limited 2015 data produced a better fit (higher R 

square) than the simple, easy-to-understand single-coefficient, no intercept model, but the predicted 

premiums actually presented a nonsensical trend.  The fit implied a lower loss ratio for higher AAL 

accounts, whereas the opposite is apparent due to greater competition between brokers for higher-

premium (and thus higher AAL) accounts.  This shows that a well-fitting regression may still not be useful 

if the data has problems. 


