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Time series can be useful in predicting many things – one of which being the popularity of names.  The Social 

Security Administration keeps track of how popular given names are every year and ranks the top one 

thousand.  For the past hundred years, James has been amongst the most popular names for boys, though it 

has become less popular in the past two decades.  Time series can be used to model this trend and forecast 

possible future popularity rankings of the name James. 

 

On the other hand, the name Abigail has quickly gained popularity in recent years.  Despite not appearing on 

the top one thousand list regularly until 1949, Abigail is now one of the ten most popular names for newborn 

girls.  Again, time series may be useful in forecasting the possible continued popularity of this name.  Data was 

analyzed in R and output is used to help create results. 

 

 
 Figure 1: Popularity of name James, by year Figure 2: Popularity of name Abigail, by year 

 

Figures 1 and 2 show this data in plots of rank by year (time 0 being the year 1900 for James and the year 1949 

for Abigail) through 2013.  Although James may have been stationary for many years, the activity in the most 

recent years changes this.  Abigail's swiftly increasing popularity (since lower number means higher rank) is 

undoubtedly a non-stationary process.  Differences are taken to turn the non-stationary processes into 

stationary processes. 

 

 

 

Model for the name James 

 

The first difference of the popularity of the name James is presented in Figure 3.  Although it appears 

stationary, a Box-Pierce Q statistic is run to confirm this. 

 

 

  



For the original series for James: 

 

> Box.test(jamests,lag=40) 

 

        Box-Pierce test 

 

data:  jamests  

X-squared = 1007.929, df = 40, p-value < 2.2e-16 

 

The p-value is small enough that we must reject the null hypothesis that the series is stationary.  The original 

series must be non-stationary. 

 
 Figure 3: First difference of popularity of name James, by year 

 

 

For the first difference: 

 

> Box.test(jamesdiff1,lag=40) 

 

        Box-Pierce test 

 

data:  jamesdiff1  

X-squared = 25.8541, df = 40, p-value = 0.9593 



 

The p-value is well above .05, so here the null hypothesis cannot be rejected; the first differences are 

considered stationary. 

 

In order to determine a proper ARIMA model for this data, correlograms and partial correlograms were used 

(Figures 4 and 5).  Here, the high autocorrelation at lag 1 and low elsewhere implies a MA(1) process of the 

first-differences.  The autocorrelation and partial autocorrelation at lag 18 are likely caused by noise, as the 

autocorrelation otherwise decays toward zero quickly.  Thus, and ARIMA(0,1,1) model was used for the name 

James. 

 

 
 Figure 4: Autocorrelation for the name James Figure 5: Partial Autocorrelation for the name James 

 
Figure 6: ARIMA(0,1,1) model (blue) for James compared to actual data (red) 



 

Figure 6 shows the ARIMA(0,1,1) model compared to the actual ranks from 1900 to 2013 for the name James.  

The time series is indeed quite close to the actual data.  The model is also parsimonious, as it uses as few 

parameters (1) as possible to closely model the data (along with using a first difference to create a stationary 

series).  The actual model used is given by: 

 

arima(x = jamests, order = c(0, 1, 1)) 

 

Coefficients: 

         ma1 

      0.1273 

s.e.  0.0891 

 

sigma^2 estimated as 0.8347:  log likelihood = -150.14,  aic = 304.28 

 

which translates to the equation 

 

�� − ���� = �� − 0.1273�� − 1 

 

where the ��� are the rankings of the names at times t and t-1, respectively, and the ��� are the residuals at 

times t and t-1, respectively. 

 

This model can be used to forecast future popularity of the name James.  Using the ARIMA(0,1,1) process to 

forecast 5 future values results in: 

 

Point     Forecast    

115       12.91696 

116       12.91696 

117       12.91696 

118       12.91696  

119       12.91696 

 

where the points 115-119 represent the years 2014-2018.  Unsurprisingly, since the model is an MA(1) process, 

it reverts back to the mean quite quickly (the value for 2013 is actually a forecasted value and so it is the only 

one affected by the MA(1) process).  Although of limited use for forecasting, the model does not provide a 

completely unreasonable forecast of near-future values. 

 

In order to ensure that the model is appropriate, the residuals should be analyzed to ensure that they are a 

white noise process.  A Box-Ljung test is run to determine this. 

 

> Box.test(jamesforecast$residuals, lag=40, type="Ljung-Box") 

 

        Box-Ljung test 

 

data:  jamesforecast$residuals  

X-squared = 28.7087, df = 40, p-value = 0.9081 

 

With such a high p-value, the null hypothesis cannot be rejected and the residuals must be stationary.  The 

ARIMA model is in fact useable. 

 



 

Model for the name Abigail 

 

The first difference of the popularity of the name Abigail was created, but the autocorrelation function showed 

no noticeable trends.  While this may be indicative that no time series exists, it seems quite likely that this is not 

true.  The second difference, as shown in Figure 7, is taken to see if a time series can be constructed.  Although 

this may lead to over-differencing, it is possible that the second difference will show a trend. 

 
Figure 7: Second difference of popularity of name Abigail, by year 

 

 

For the original data series: 

 

> Box.test(abbyts,lag=40) 

 

        Box-Pierce test 

 

data:  abbyts  

X-squared = 612.245, df = 40, p-value < 2.2e-16 

 

Just like with the data for the name James, a Box-Pierce test was run to determine stationarity of the data.  

Similarly, the Abigail data is clearly not stationary as the p-value is so low that we must reject the null 

hypothesis. 

 

 

  



For the second differences: 

 

> Box.test(abbydiff2,lag=40) 

 

        Box-Pierce test 

 

data:  abbydiff2  

X-squared = 54.2768, df = 40, p-value = 0.06543 

 

For the second difference, although the p-value is close to .05, it is still above it and we cannot reject the null in 

favor of the alternative; the series is stationary. 

 

 
 Figure 8: Autocorrelation for the name Abigail Figure 9: Partial Autocorrelation for the name Abigail 

 

Correlograms and partial correlograms were again used to determine what the appropriate ARIMA model 

would be for the Abigail data.  Here, unlike for James, the choice was not quite so obvious (Figures 8 and 9).  

The correlogram is likely indicative of an MA(1) relationship, though the partial correlogram shows that the 

process may be more complicated.  For the sake of comparison, three different models were constructed: an 

ARIMA(0,2,1), and ARIMA(1,2,0), and an ARIMA(1,2,1).  They are, in order: 

 

> Arima(abbyts, order=c(0,2,1)) 

Series: abbyts  

ARIMA(0,2,1)                     

 

Coefficients: 

          ma1 

      -0.9210 

s.e.   0.0634 

 

sigma^2 estimated as 835.5:  log likelihood=-302.27 

AIC=608.54   AICc=608.74   BIC=612.82 

 

> Arima(abbyts, order=c(1,2,0)) 

Series: abbyts  

ARIMA(1,2,0)                     

 



Coefficients: 

          ar1 

      -0.5852 

s.e.   0.1041 

 

sigma^2 estimated as 1194:  log likelihood=-312.78 

AIC=629.56   AICc=629.76   BIC=633.85 

 

> Arima(abbyts, order=c(1,2,1)) 

Series: abbyts  

ARIMA(1,2,1)                     

 

Coefficients: 

          ar1      ma1 

      -0.2006  -0.8635 

s.e.   0.1425   0.0949 

 

sigma^2 estimated as 812.1:  log likelihood=-301.3 

AIC=608.59   AICc=609   BIC=615.02 

 

All of these ARIMA models produced a graph that was very close to that of the actual data.  To decide which 

one was the most appropriate, the next five values in the series were forecast with each ARIMA model.  The 

results made more sense for some models than for others.  In the same order, the forecast values are: 

 

ARIMA(0,2,1) 

66     3.97664414 

67    -0.04671173 

68    -4.07006759 

69    -8.09342346 

70   -12.11677932 

 

ARIMA(1,2,0) 

66       8.414769 

67       9.172033 

68       9.728858 

69      10.402986 

70      11.008465 

 

ARIMA(1,2,1) 

66      6.1921120 

67      4.9474764 

68      3.5898543 

69      2.2548969 

70      0.9153931 

 

Here, the points 66-70 represent the years 2014-2018.  For the forecasts, the ARIMA(0,2,1) series makes no 

sense as it's predicting negative future values (which, of course, we cannot have).  The other two models are 

providing sensible forecasts.  The model settled on was the ARIMA(1,2,1) model, as the original thought was 

that an MA(1) process was part of the overall ARIMA model (though the other model seems perfectly sensible 

as well).  This ARIMA model is written as 



 

�� − 2���� + ���� = −0.2006����� − 2���� + ����� + �� − 0.8635���� 

 

Finally, a Box-Ljung test is run to ensure the residuals are stationary. 

 

> Box.test(abbyforecast$residuals, lag=40, type="Ljung-Box") 

 

        Box-Ljung test 

 

data:  abbyforecast$residuals  

X-squared = 24.1991, df = 40, p-value = 0.9771 

 

The p-value above .05 means the null hypothesis should be rejected and the residuals are stationary.  The 

ARIMA model is appropriate.  It is shown together with the actual data in Figure 10. 

 

 
Figure 10: ARIMA(1,2,1) model (blue) for Abigail compared to actual data (red) 

 

 

Conclusion 

 

The ARIMA models create plausible models for approximating actual values and forecasting future values for 

both the names Abigail and James.  Despite the fact that both names follow different patterns, they can both be 

modeled with ARIMA time series.  As expected, the models are quite different, but this is because the names 

are quite different in their historical popularity. 

 


