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Time Series Analysis of Final Jeopardy Questions
Introduction

It is rare that a television program not only stretches beyond three decades, but continues to
enthral audiences of all ages with various backgrounds, interests, and intellects. Since 1984 Alex
Trebek has entered our hearts and living rooms to praise contestants on correct responses while
smugly fixing their errors.

Many interesting Jeopardy time series could be modelled. One that easily comes to mind would
be for the expected nightly winnings since each episode’s champion remains and can last weeks
before being eliminated—a clear correlation between neighbouring payouts.

However, my interest in fitting Jeopardy data to autoregressive integrated moving average
(ARIMA) models is more selfish. With the high-level of game theory involved, | believe the most
interesting part of the game is Final Jeopardy when contestants wager any amount of their daily
purse to surpass their two opponents and be crowned champion. Since | began regularly
watching during university, | have always felt confident at the unveiling of certain Final Jeopardy
categories, while other categories guarantee my struggle through a clueless reasoning process
as the theme song whistles away.

It is well known by the Jeopardy faithful that certain categories have higher repetition rates than
others, and | think it will be interesting to explore ARIMA(p,d,q) models for the annual
percentages of Final Jeopardy questions falling in popular categories. If a suitable model exists, |
will be able to predict the successive years’ percentage for that Final Jeopardy category.

Data

| obtained the database, filled with 216,931 lines from Jeopardy’s history, on Reddit’s web site
(http://www.reddit.com/r/datasets/comments/1uyd0t/200000 jeopardy_questions_in_a_json
_file/). With the help of archived episodes the available data includes the show number, date
the show aired, round of the clue (Jeopardy, Double Jeopardy, or Final Jeopardy), category
name, value of the clue, question/clue, and the correct answer.

Based on the interest of this time series model (and time), | first extracted only the lines
associated with the Final Jeopardy round. | then proceeded to sort the remaining 3,631 lines
into broader groupings than what the database listed in the category column. Although not
from the exact same-named category, certain clues should generally be grouped together:
‘WORLD CITIES’ and ‘THE 50 STATES’, ‘AMERICAN LITERATURE’ and ‘FICTIONAL CHARACTERS’,
‘PUNCTUATION’ and ‘ANAGRAMS’, ‘ROMAN EMPERORS’ and ‘HISTORIC NAMES’, etc. The



categories, question/clues, and answers from the original database were taken into
consideration during this further grouping process. This process sifted the 1,948 unique Final
Jeopardy categories into the 12 broader categories listed here:

- Famous Individuals & Leaders - Science, Industry & Organizations

- Geography, Places & Landmarks - Sports & Games

- History & Empires - Theater, Opera & the Arts

- Language & Words - TV, Film & Music

- Literature, Poetry & Authors - U.S. Presidents, Govt, Politics & Law

- Religion, Mythology & the Bible - Other: Food, Celebrations, Holidays, etc.

The original intention was to track how many Final Jeopardy questions fell into each of these
broader categories on an annual basis dating back to 1984. However, a problem quickly became
apparent. The number of episodes per year increased as the show gained in popularity, so the
pure number of Final Jeopardy questions asked is naturally skewed towards the later years.
Further, archived episodes are more difficult to locate from the earliest years, thus contributing
to the data being heavily weighted towards the later years. The solution was to focus on the
annual percentages of each category instead of the raw number of questions. Also, combining
the years prior to 1997 eliminated the need to rely on the limited data (~20 data pts/year) in
calculating percentages for years from 1984 to 1996.
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Once again selfishly, | will focus on building a model for my favourite and least favourite
categories, ‘Geography, Places & Landmarks’ and ‘Theater, Opera & the Arts’ respectively. Side
note: these categories may or may not also be my most and least successful.

Annual Percentage of Final Jeopardy Categories
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Test of Stationarity and Adjustments (If Necessary)

For each category, | must examine the data to see if we have a stationary time series, which is
necessary to correctly model the time series. The test of stationarity will be based on
autocorrelation function, which is the ratio of the sample covariance to the sample variance.

The autocorrelation formula used to estimate p, can be expressed as:

1Y =V (Vy = 1)
—2
t=1(Ye =)

'y =

Instead of manually calculating and plotting the “Correlogram” graph of ry versus k, it is easily
graphed using R. Below are two graphs depicting the autocorrelation function for the categories
‘Geography, Places & Landmarks’ (denoted X) and ‘Theater, Opera & the Arts’ (denoted Y).
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In order to suppose that after a certain amount of lag the result becomes white noise, the
autocorrelation needs to be close to zero. All values are within the horizontal dashed lines
placed at plus or minus two approximate standard errors of the sample autocorrelations. Since
the autocorrelations oscillate around zero starting at lag 1 and continuing forever, the
correlogram graphs very clearly indicate that each category can be considered a stationary
process. No adjustments (differences, logarithms, diff of logs, transformations, etc.) are
necessary to create a stationary process. | conclude that ARIMA(p,d,q) will have d = 0, and we
can move ahead with estimating the p and g in our ARIMA(p,0,q) model.

Model Estimation

Now that the stationarity of these time series have been determined, the question becomes
which model is a best fit. The graphs of X; vs. Xi.1, X; vs. Xi», and X; vs. Xi3 (Similarly for the Ys)
give a general idea if AR(1), AR(2), or AR(3) models would be a good fit for the data. A
correlation in these graphs would suggest an autoregressive model is appropriate, where as a
general scatter with little correlation might insinuate a moving average model.
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For ‘Geography, Places & Landmarks’ (X) one can see a slight positive correlation in the Lag 1
graph and slight negative correlation in the Lag 2 graph, however neither are strong. The graphs
for ‘Theater, Opera & the Arts’ (Y) are more randomly scattered with very little, if any, trend. |
will proceed by fitting and testing AR(1), AR(2), AR(3) and MA(1) models for these data using R.

Model/Parameter Fitting
A pth-order autoregressive process and qth-order moving average model satisfy the equations:

Autoregressive [AR(p)] Moving Average [MA(q)]

Y= ¢1Yt-1 + ¢2Yt-2 + ...+ q)th-p + 0 + et Yi=et— O1ec1- 02802 — ... - qut.q +0

Note: § is simply a constant corresponding to the intercept of the model.

Using R’s built-in ARIMA(p,d,q) function | was able to find the values of the unknown parameters
for the AR(1), AR(2), AR(3) and MA(1) models of X (‘Geography, Places & Landmarks’) and Y

(‘“Theater, Opera & the Arts’). Please refer to the Appendix: R output.

X: Geography, Places & Landmarks

R Adj R? d1 o2 o3 01 d pY0)
AR(1) | 0.0299 | -0.0447 | 0.2179 - - - 0.1321 | 0.2179
AR(2) | 0.2551 | 0.1196 | 0.3053 | -0.5283 - - 0.1301 | -0.2230
AR(3) | 0.2562 | 0.0083 | 0.2050 | -0.4759 | -0.1944 - 0.1297 | -0.4653
MA(1) - - - - - 0.5483 | 0.1330 -

Y: Theater, Opera & the Arts

R Adj R? d1 o2 o3 01 d pY0)
AR(1) | 0.0038 | -0.0728 | 0.0568 - - - 0.0518 | 0.0568
AR(2) | 0.0578 | -0.1135 | 0.1028 | -0.2702 - - 0.0513 | -0.1674
AR(3) | 0.0781 | -0.2292 | 0.1244 | -0.2898 | 0.0594 - 0.0514 | -0.1060
MA(1) - - - - - 0.1002 | 0.0518 -




Clearly none of the AR(p) models are stellar. In regards to the ‘Geography, Places & Landmarks’
category, one might conclude the AR(2) model is the best autoregressive option due to it having
the highest coefficient of determination (R%) in combination with the principle of parsimony,
which aims to simplify the model with the least amount of terms. That said, a model that only
explains 25.5% of variation in a data set means it is not a good model for the data. None of the
autoregressive models have any clout for the ‘Theater, Opera & the Arts’ category. Looking
even further into the associated p-values of each AR(p) models’ coefficients, it becomes clear to
select the MA(1) models since the p-values are almost all considered insignificant (>0.05).

AR(p) X : Geography, Places & Landmarks Y : Theater, Opera & the Arts
p p-value ¢, p-value ¢, | p-value ¢s3 | p-value ¢, | p-value ¢, p-value ¢3
1 0.4664 - - 0.8282 - -
2 0.2662 0.0284 - 0.6947 0.3457 -
3 0.4995 0.0542 0.4771 0.6624 0.3386 0.8458

Standardized Residuals

Note: calculation of p-value ¢, for X: z=0.2179/0.2992;.) = 0.7283 = p-value = 0.4664

Residuals analysis

Since the Moving Average Model is selected for this data, the Durbin Watson and Box-Pierce Q
test for the white noise of the residuals are unnecessary.

Summation of Residuals Dif ference Squared  Y.(&; — &_1)?

DWS = =
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Looking at the graphs of the standardized residuals of the MA(1) models below, there is no
apparent trends and hence the plots generally support the models. The residuals have the near
properties of a stochastic white noise process.
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Forecasting and Conclusion

Autoregressive models are best for time series hinting towards long-term dependencies. Since
the annual percentage of Final Jeopardy questions asked within a certain category is completely
arbitrary (subject to the show’s question developers), it is reasonable that no autoregressive



model fits this data well. These conclusions make me wish that reliable historical data was
readily available for the nightly Jeopardy payouts (contestant-winnings/show-losses) as
discussed in the introduction. This data could lead to a more interesting ARIMA model.

Although the percentages seem to be arbitrary from year to year, | will still predict them for the
next 5 years from the final data in 2011. To compute | used the following MA(1) formulas:

Xt =-e¢- 0.5483er1 + 0.1330 and Yi=-et-0.1002e.1 + 0.0518

The predicted future percentages are italicized in the chart below and can also be found in the
Appendix: R output.

X: Geography, Places | Y:Theater, Opera &

Year & Landmarks the Arts
Pre-1996 18.12% 6.59%

1997 13.63% 6.36%

2011 14.94% 3.32%

2012 14.28% 4.97%

2013 13.30% 5.18%

2014 13.30% 5.18%

2015 13.30% 5.18%

2016 13.30% 5.18%

Below is a repeat graph now containing these predictions. Unfortunately it does not look like
Jeopardy will eliminate questions regarding the ‘Theater, Opera & the Arts’. On the bright side,
there will continue to be a higher percentage of questions from the ‘Geography, Places &
Landmarks’ associated categories.
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Appendix: R output

> library(TSA)
> getwd()
[1] "/Users/Owner"
> setwd("~/Desktop/VEE Time Series/Projects")
> data <- read.table("JEOPboth%.csv", header=TRUE, sep=",")
> data
X Y
0.1812 0.0659
0.1364 0.0636
0.1121 0.0538
0.1135 0.0568
0.0982 0.0580
0.1232 0.0591
0.1667 0.0175
0.1146 0.0318
0.1227 0.0500
10 0.1422 0.0533
11 0.1565 0.0652
12 0.1299 0.0606
13 0.1078 0.0388
14 0.1150 0.0442
15 0.1255 0.0779
16 0.1494 0.0332
> attach(data)
>
> dev.new(width=3, height=3, pointsize=8)
> plot(acf(X,lag.max= 15), xlab="Lag", ylab=NULL, main
"Autocorrelation Function X")
>
> dev.new(width=3, height=3, pointsize=8)
> plot(acf(Y¥,lag.max= 15), xlab="Lag", ylab=NULL, main
"Autocorrelation Function Y")
>
> dev.new(width=3,height=3,pointsize=8)
> plot(y=X, x=zlag(X,l), ylab=expression(X[t]), xlab=expression(X[t-
1]), type='p', main="Exploring Lag 1 Correlation of X")
>

OO0 W
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> dev.new(width=3,height=3,pointsize=8)

> plot(y=X, x=zlag(X,2), ylab=expression(X[t]), xlab=expression(X[t-
2]), type='p', main="Exploring Lag 2 Correlation of X")

>

> dev.new(width=3,height=3,pointsize=8)

> plot(y=X, x=zlag(X,3), ylab=expression(X[t]), xlab=expression(X[t-
3]), type='p', main="Exploring Lag 3 Correlation of X")

>

> dev.new(width=3,height=3,pointsize=8)

> plot(y=Y, x=zlag(Y¥,l), ylab=expression(Y¥[t]), xlab=expression(Y[t-
1]), type='p', main="Exploring Lag 1 Correlation of Y")

> dev.new(width=3,height=3,pointsize=8)

> plot(y=Y, x=zlag(Y¥,2), ylab=expression(Y¥[t]), xlab=expression(Y[t-
2]), type='p', main="Exploring Lag 2 Correlation of Y")

> dev.new(width=3,height=3,pointsize=8)

> plot(y=Y, x=zlag(Y¥,3), ylab=expression(Y¥[t]), xlab=expression(Y[t-
3]), type='p', main="Exploring Lag 3 Correlation of Y")



> arima(X, order=c(1,0,0))

Call:
arima(x = X, order = c(1, 0, 0))

Coefficients:
arl intercept

0.2179 0.1321
s.e. 0.2992 0.0071
sigma”2 estimated as 0.0004767: log likelihood = 38.46, aic = -72.92
>
>
>

> arima(X, order=c(2,0,0))

Call:
arima(x = X, order = c(2, 0, 0))

Coefficients:

arl ar2 intercept
0.3053 -0.5283 0.1301
s.e. 0.2746 0.2411 0.0042
sigma”2 estimated as 0.0003621: 1log likelihood = 40.34, aic = -74.68
>
>
>

> arima(X, order=c(3,0,0))

Call:
arima(x = X, order = c(3, 0, 0))

Coefficients:

arl ar2 ar3 intercept
0.2050 -0.4759 -0.1944 0.1297
s.e. 0.3036 0.2472 0.2734 0.0035
sigma”2 estimated as 0.0003482: log likelihood = 40.58, aic = -73.16
>
>
>

> arima(X, order=c(0,0,1))

Call:
arima(x = X, order = c(0, 0, 1))

Coefficients:
mal intercept

0.5483 0.1330
s.e. 0.2483 0.0079
sigma”2 estimated as 0.0004258: 1log likelihood = 39.21, aic = -74.42

>

>
>
>



> arima(Y,order=c(1,0,0))

Call:
arima(x = Y, order = c(1, 0, 0))

Coefficients:
arl intercept

0.0568 0.0518
s.e. 0.2618 0.0039
sigma”2 estimated as 0.0002213: 1log likelihood = 44.62, aic = -85.25
>
>
>

> arima(Y,order=c(2,0,0))

Call:
arima(x = Y, order = c(2, 0, 0))

Coefficients:

arl ar2 intercept
0.1028 -0.2702 0.0513
s.e. 0.2620 0.2866 0.0032
sigma”2 estimated as 0.0002079: 1log likelihood = 45.05, aic = -84.09
>
>
>

> arima(Y,order=c(3,0,0))

Call:
arima(x = Y, order = c(3, 0, 0))

Coefficients:

arl ar2 ar3 intercept
0.1244 -0.2898 0.0594 0.0514
s.e. 0.2849 0.3029 0.3055 0.0034
sigma”2 estimated as 0.0002071: 1log likelihood = 45.06, aic = -82.13
>
>
>

> arima(Y, order=c(0,0,1))

Call:
arima(x = Y, order = c(0, 0, 1))

Coefficients:
mal intercept

0.1002 0.0518
s.e. 0.3591 0.0041
sigma”2 estimated as 0.0002207: log likelihood = 44.64, aic = -85.28
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> modelXAR1l <- 1Im(X ~ zlag(X,1l) +1)
> summary (modelXAR1)

Call:
Im(formula = X ~ zlag(X) + 1)

Residuals:
Min 10 Median 30 Max
-0.027052 -0.013997 -0.001531 0.008523 0.040054

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.10894 0.02988 3.646 0.00296 **
zlag(X) 0.14371 0.22703 0.633 0.53772

Signif. codes:
0 ****’/ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 0.01971 on 13 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.0299, Adjusted R-squared: -0.04472

F-statistic: 0.4007 on 1 and 13 DF, p-value: 0.5377

>

>

>

> modelXAR2 <- 1Im(X ~ zlag(X,1l) + zlag(X,2) +1)
> summary (modelXAR2)

Call:
Im(formula = X ~ zlag(X, 1) + zlag(X, 2) + 1)

Residuals:
Min 10 Median 30 Max
-0.033249 -0.007999 -0.001594 0.012569 0.027273

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.15152 0.04077 3.717 0.0034 *=*
zlag(X, 1) 0.23089 0.27734  0.833  0.4228
zlag(X, 2) -0.41285 0.21918 -1.884 0.0863 .

Signif. codes:
0 ****’/ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 0.01863 on 11 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.2551, Adjusted R-squared: 0.1196

F-statistic: 1.883 on 2 and 11 DF, p-value: 0.198

>

>

>



> modelXAR3 <- 1Im(X ~ zlag(X,1l) + zlag(X,2) + zlag(X,3) +1)
> summary (modelXAR3)

Call:
Im(formula = X ~ zlag(X, 1) + zlag(X, 2) + zlag(X, 3) + 1)

Residuals:
Min 10 Median 30 Max
-0.033121 -0.008847 -0.000265 0.012861 0.024652

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.18496 0.06654 2.780 0.0214 =+
zlag(X, 1) 0.12887 0.33880 0.380 0.7125
zlag(X, 2) -0.40303 0.30874 -1.305 0.2241
zlag(X, 3) -0.16924 0.27199 -0.622 0.5492
Signif. codes:

0 ****’/ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 0.02009 on 9 degrees of freedom
(3 observations deleted due to missingness)

Multiple R-squared: 0.2562, Adjusted R-squared: 0.008278

F-statistic: 1.033 on 3 and 9 DF, p-value: 0.4232

>

>

>

> modelYAR1l <- 1Im(Y ~ zlag(Y¥,1) +1)
> summary (modelYAR1)

Call:
Im(formula = Y ~ zlag(Y, 1) + 1)

Residuals:
Min 10 Median 30 Max
-0.033799 -0.009205 0.002576 0.008393 0.027542

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.04757 0.01562 3.045 0.0094 *=*
zlag(Y, 1) 0.06317 0.28374 0.223 0.8273

Signif. codes:
0 ****’/ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 0.016 on 13 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.003799, Adjusted R-squared: -0.07283
F-statistic: 0.04957 on 1 and 13 DF, p-value: 0.8273
>
>
>



> modelYAR2 <- 1Im(Y ~ zlag(Y¥,1l) + zlag(Y¥,2) +1)
> summary (modelYAR2)

Call:
Im(formula = Y ~ zlag(Y, 1) + zlag(Y, 2) + 1)

Residuals:
Min 10 Median 30 Max
-0.031153 -0.007961 0.002519 0.010164 0.024974

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.06056 0.02111 2.869 0.0153 =*
zlag(Y, 1) 0.07108 0.30993 0.229 0.8228
zlag(Y, 2) -0.27774 0.33834 -0.821 0.4291

Signif. codes:
0 ****’/ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 0.01648 on 11 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 0.0578, Adjusted R-squared: -0.1135

F-statistic: 0.3374 on 2 and 11 DF, p-value: 0.7208

>

>

>

> modelYAR3 <- 1Im(Y ~ zlag(Y¥,1l) + zlag(Y¥,2) + zlag(Y,3) +1)
> summary (modelYAR3)

Call:
Im(formula = Y ~ zlag(¥, 1) + zlag(Y¥, 2) + zlag(Y, 3) + 1)

Residuals:
Min 10 Median 30
-0.0305192 -0.0108302 0.0004322 0.0110347

Max

0.0236959

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 0.05855 0.03115 1.880 0.0929
zlag(Y, 1) 0.08418 0.37316 0.226 0.8266
zlag(Y, 2) -0.36727 0.42829 -0.858 0.4134
zlag(Y, 3) 0.10198 0.42396 0.241 0.8153
Signif. codes:

0 ****’/ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * * 1

Residual standard error: 0.01797 on 9 degrees of freedom
(3 observations deleted due to missingness)

Multiple R-squared: 0.07808, Adjusted R-squared: -0.2292

F-statistic: 0.2541 on 3 and 9 DF, p-value: 0.8566

>

>



> modelXMAl = arima(X,order=c(0,0,1))

> dev.new(width=5,height=3,pointsize=8)

> plot(rstandard(modelXMAl), ylab='Standardized Residuals', type='o',
main="X: Standardized Residuals from MA(1l)"); abline(h=0)

> modelYMAl = arima(Y,order=c(0,0,1))

> dev.new(width=5,height=3,pointsize=8)

> plot(rstandard(modelYMAl), ylab='Standardized Residuals', type='o',
main="Y: Standardized Residuals from MA(1l)"); abline(h=0)

>
>

>

> predict(arima(X,order=c(0,0,1)),n.ahead=5)
Spred

Time Series:

Start = 17

End = 21

Frequency =1

[1] 0.1428137 0.1329763 0.1329763 0.1329763
[5] 0.1329763

Sse

Time Series:
Start = 17
End = 21

Frequency =1
[1] 0.02063584 0.02353448 0.02353448 0.02353448
[5] 0.02353448

> predict(arima(Y,order=c(0,0,1)),n.ahead=5)
Spred

Time Series:

Start = 17

End = 21

Frequency =1

[1] 0.04967142 0.05180394 0.05180394 0.05180394
[5] 0.05180394

Sse

Time Series:
Start = 17
End = 21

Frequency =1
[1] 0.01485645 0.01493085 0.01493085 0.01493085
[5] 0.01493085



