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INTRODUCTION 
Since her inception, the United States has been and always will be the nation of immigrants. Over the 
years, immigration to US has instigated a range of feelings from most positive to most negative. Being an 
immigrant myself, I was intrigued at the thought of modeling the immigration and took upon this task.  
 
The purpose of this project is to model the annual immigration into the United States. In order to 
perform this project, I relied on Annual Immigration into the United States: thousands. 1820-1962 data 
provided by Time Series Data Library.  
 
The data can be viewed online at the following address: https://datamarket.com/data/set/22ze/annual-
immigration-into-the-united-states-thousands-1820-1962#!ds=22ze&display=line.  
 
In addition, I would like to point out that I used SPSS 23 in order to perform all my time series analyses. 
The time series modeling process is typically composed of three steps: 

I. Model Specification – the ultimate goal of this step is to select an appropriate model based 
on various statistical analyses performed 

II. Model Fitting – once the model has been specified, it would have to be fitted to the data by 
estimating the necessary parameters this specified model 

III. Model Diagnostics – in this last step, the quality of the model is evaluated to see if the 
model adequately describes the data 

As such, I organized my analyses in these three logical steps. 
 

I. MODEL SPECIFICATION 
Given Time Series 
First, I would like to provide the actual time series data for the annual immigration for the time period of 
1820 – 1962: 
 

 



By simply looking at the plot, we can tell that the immigration to US has been increasing from 1820 
through 1905 in what seems to be a positive “trend”. Through the years 1905-1930, there are sharp 
declines followed by sharp inclines in what appears to be greater variability in the data. From then on, 
the immigration declines until it starts to spike again around 1942 through the end of 1962. There are 
clearly outliers in the data and some of the patterns may be directly influenced by major policy changes 
or historical events such as World Wars I and II.  
 
The time series plot led me to believe that the series is neither stationary nor normal. The following are 
the Q-Q plot and Descriptive Statistics of this series that point toward non-normality: 

 
 

 
 
 
While it is true that the fundamental principle of the Time Series is an independent and identically 
distributed normal data that satisfies the stationarity condition, for now let’s consider further 
descriptive statistics in order to get an idea of what the model might look like. Next, let’s check to see 
whether the series is independent or not. 
 



Correlogram plots the autocorrelation function (ACF) by the number of lags and looks for dependence in 
the data. If the ACFs are oscillating above and below the ACF=0, then that points toward independent 
data points in the series. However, the correlogram below shows that the data points in the series are 
dependent with almost all of the ACFs being above the upper confidence limits for the given lag 
numbers: 
 

 
 
The Partial ACF helps us gain further insight of what the model might be. The plot below tells us that 
Partial ACFs at lags 1 and 3 are concerning as they cross over the confidence limits: 
 

 
 



A somewhat sine wave of the graph leads me to believe that we are possibly looking at a variation of the 
Autoregressive model of order 2, that is, AR (2). Now, we must recall that we are still looking at 
nonstationary and non-normal data. 
 
The nonstationarity and non-normality in the data can be addressed by the two techniques in Time 
Series: log-transformation and differencing. Log-transformation decreases the data spread by making 
variance constant and improves normality. And differencing turns the nonstationary data into stationary 
data, thereby making the data workable. 
 
1st-Differenced Time Series 
Therefore, I proceeded by doing a natural log-transformation and then taking 1st difference of the series. 
As expected, now the Q-Q plot reveals a normally distributed data:  

 
 
In this case, the dependence test – by and large, the correlogram for ACF reveals a much more 
independent data than before with ACF at lags 2 and 6 requiring attention with the one at lag 8 also 
being slightly above the upper confidence limit: 
 



 
 
And now, the Partial ACF correlogram improves the minor concern at lag 8. However, Partial ACF at lags 
2 and 6 still cross over the lower confidence limits: 

 
At this juncture of my analysis, I was faced with the following two directional options: 

1. Should I take another difference in order to get a better model?  
2. Should I stop here and define the model now? 



2nd- Differenced Time Series 
When I was first performing this analysis, I first went with option 1 and realized that taking a 2nd 
difference would amount to over-differencing. Over-differencing is unfavorable as it creates 
unnecessary correlations and may eventually make the model non-invertible. First, I would like to 
present the ACF correlogram: 
 

 
We can now see that we have added correlations at lags 1 and 5. At this point, we have three 
pronounced ACF at lags 1, 5, and 6, worse compared to the 1st-differenced time series.  
 
The correlogram for the Partial ACF solidifies the thought that taking the 2nd difference is a bad idea: 

 
 



We can now observe that the series data has six partial ACFs crossing over the lower confidence limit. As 
such, we can conclude that the 2nd- differenced time series is a bit too much as it ends up in over-
differencing. Therefore, we should stop at the 1st-differenced time series.  
 
Based on my analysis of the 1st-differenced time series above, I believe that the model is ARIMA (2, 1, 0) 
or simply ARI (2, 1). In other words, it is an Integrated Autoregressive model of order 2 and differenced 1 
time only.  ARI (2, 1) can be described by the following equations: 
 
Yt - Yt-1 = ᶲ1(Yt-1 - Yt-2) +ᶲ2(Yt-2 - Yt-3) +et                            or             ∆ Yt = ᶲ1 ∆Yt-1 + ᶲ2 ∆Yt-2 +et 
 

Please note that the right hand side of the equation is stationary. Naturally, the next step in the 
modeling process is to estimate the parameters ᶲ1 and ᶲ2.  
 

II. MODEL FITTING 
I estimated parameters ᶲ1 and ᶲ2 using the regression analysis. In order to prepare the groundwork for 
this regression analysis, I did the following in sequence: 

1. Note that Yt is the given raw annual immigration data 
2. Created columns Yt-1, Yt-2, Yt-3 
3. Logged each one of Yt, Yt-1, Yt-2, Yt-3  (logging is needed for data transformation) 
4. Created three additional columns based on the difference of the logs as follows: 

 

 
 

5. Note that et, the white noise, is also logged 

Then, the regression analysis yields the following: 
 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 5.550 2 2.775 7.934 .001b 

Residual 47.913 137 .350   

Total 53.463 139    

a. Dependent Variable: Logged_Diff_Immig 

b. Predictors: (Constant), Logged_Diff_Immig_Less2, Logged_Diff_Immig_Less1 

 

ln (Yt) - ln (Yt-1) 

this is the left hand side of the 
equation and this value is entered 
as a dependent variable in the 
regression analysis

ln (Yt-1) - ln (Yt-2) 

ln (Yt-2) - ln (Yt-3) 

these two are independent variable 

coefficients for ᶲ1 and ᶲ2 

respectively



 
 
As such, we estimate the parameters to be: 

 ᶲ1 = -0.199 
 ᶲ2 = -0.286 
 The constant or intercept of -0.037 refers to the natural log of et or ln(et). In order to derive the 

white noise et itself, we have to exponentiate, exp (-0.037). Thus, et = 0.964. 
 
Therefore, based on my analyses above, the estimated (or predicted) model ARI (2, 1) would look like 
the following:  

W = ∆ Yt = -0.199 ∆Yt-1 - 0.286∆Yt-2 +0.964 
 

Naturally, the final question in the modeling process is – how good is the model?  
 

III. MODEL DIAGNOSTICS 
Regression 
The Model Summary below demonstrates that R=0.322, a rather weak correlation between the 
dependent and independent variables. In addition, R2 = 10.4% tells us that merely about 10% of the 
variation in the annual immigration into US is explained by the linear trend. Certainly, I had hoped to 
arrive at a much stronger model at the outset of this analysis.  
 

Model Summary 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .322a .104 .091 .5913802 .104 7.934 2 137 .001

a. Predictors: (Constant), Logged_Diff_Immig_Less2, Logged_Diff_Immig_Less1 
 
 
Residual Analysis 
The residual mean of 0.00000 in the table below indicates that the difference between Actual and 
Predicted series is statistically insignificant, and that is favorable. In other words, the difference between 
the actual immigration time series data points and the fitted model is trivial on average. 
 
 
 



Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -1.027539 .556807 -.024677 .1998151 140 

Residual -2.5912876 2.8964753 .0000000 .5871103 140 

Std. Predicted Value -5.019 2.910 .000 1.000 140 

Std. Residual -4.382 4.898 .000 .993 140 

a. Dependent Variable: Logged_Diff_Immig 

 
In addition, the residuals are normally distributed as demonstrated by the following two graphs below: 

 
 



 
 
Finally, the Standardized Residual Scatterplot shows that the data points are largely concentrated 
around zero with a handful of outliers: 

 
 

 
 
 
 



CONCLUSION 
In conclusion, I was able to come up with a model that reflects annual immigration into the United 
States. For convenience, I will restate that the model is ARI (2, 1) of the form  
 

W = ∆ Yt = -0.199 ∆Yt-1 - 0.286∆Yt-2 +0.964 
 
In developing this model, I relied on all the annual immigration data from 1820 to 1962. As such, the 
effects of any external factors such as wars or immigration policy changes that may have caused outliers 
were left alone in this analysis. Perhaps, such external factors can be thought of as part of the game if 
this model is going to be used to predict future immigration rates, because there will always be external 
factors in the future, though may be different in magnitude. This aspect of external factors should be 
studied in a future analysis that is beyond the scope of this coursework. 
 
Now, with respect to the quality of my model, I take comfort that the standardized residual analysis with 
a mean of 0.00000 showed that there was no statistical difference between the actual immigration time 
series and those predicted by my model on average. In addition, the normality of the standardized 
residuals also reflects the model, and that is also favorable.  
 
On the other hand, the regression analysis revealed a fairly weak correlation of R=0.322 between 
independent and dependent variables. In layman’s terms, the immigration rates for the last two years 
are weakly correlated to the immigration rate this year. In addition, R2 = 10.4% tells us that only about 
10% of the variation in the annual immigration into the US is explained by the linear trend. Therefore, 
from a statistical point of view, the model may not adequately predict future immigration rates.  
 
I believe this analysis can be improved in the future, however, I must note that it is beyond the scope of 
this coursework. I would probably go about analyzing the actual impacts of any historical policy changes 
and wars on the immigration time series and negating the impacts of such events on the model. This 
way the model would reflect real immigration less any external factors. I think that this may make the 
model more accurate.  


