TIME SERIES PROJECT
by Gabriel Paolo Dino

INTRODUCTION

In a business setting, we want to maximize our resources, to cut out cost but not in the expense of
the quality of service we offer to the customers and as well as the well-fare of the workers. To be
able to meet the minimum requirement of this scenario, we have to have a little bit of knowledge
about WORK FORCE OPTIMIZATION.

The main idea in Work force optimization is all about Business Forecasting. Business Forecasting
is the ability to predict the future as accurately as possible, given all the information available
including historical data and forecasts (Hyndman, 2013). We try to do this for us to be able to
organize future activities trying to incorporate rooms for uncertainties, to be prepared on the
possible situation of the business in the future and for effective management.

Now, we will look at the health insurance claims data of LoveYourSelf Insurance Company. A
certain team in the company handles these medical insurance claims. They review all the
transaction requests from the hospital and send a feedback whether the request is approved or
denied.

* Transactions in claiming insurance benefits
* Additional Guarantee Letter (AGL) — request for admission
* Top Up — request to upgrade the approved medical claim
* Final Guarantee Letter (FGL) — final transaction for discharge

* Here is the Health Services Historical Claims Data categorized based on their transaction type.

Month AGL TopUp FGL
1 2010 02 31% 42 23940 21 2011 10 569 iz 422
2 2014 03 463 34 389 22 2011 11 587 56 4486
3 2010 a4 491 25 384 23 2011 12 @02 50 451
4 2014 05 496 51 381 24 2012 01 505 a7 366
5 2010 0® 485 3% 384 25 2012 02 585 52 446
6 2010 a7 524 ql 332 26 2012 03 592 is 483
T 2010 08 45E 2% 366 27 2012 D4 602 56 437
B zo1a a9 506 35 354 2B 2012 05 598 63 421
9 201d 10 571 69 450 29 2012 pe E11 62 432
10 o010 11 497 47 332 30 2012 0T 640 78 463
11 zo1a 12 542 45 452 31 2012 DE 5ES5 i1 452
12 2011 a1 437 41 393 32 2012 0% &O2 39 432
13 2011 a2 445 44 323 33 2012 10 627 70 449
14 2011 03 604 it 452 34 2012 11 537 i6 IBE
15 2011 04 a7% 3% 367 35 2012 12 614 58 457
16 2011 a5 533 40 383 36 2013 01 614 71 472
17 2011 06 585 62 407 37 2013 02 487 62 373
18 2011 a7 603 61 is4 38 2013 03 733 B9 570
19 2011 a# S2E 76 335 39 2013 pd 675 T4 520
20 2011 a9 540 47 395 40 2013 05 677 B& 430




TIME SERIES PLOT

For time series data, the obvious graph to start with is a time plot. That is, the observations are
plotted against the time of observation, with consecutive observations joined by straight lines.As
we can see; the time series has an increasing pattern.
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Now we graph the monthly seasonal plots of each claim per transaction type. We will first proceed
with AGL

TREND AND SEASONALITY (AGL)

Decomposed Series of AGL

Seasonally adjusted Work AGL
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The time series plot can be decomposed to clearly see the seasonality component, trend
component and the remainder component. All three components are shown in the bottom three




panels. These three components can be added together to reconstruct the data shown in the top
panel. The remainder component shown in the bottom panel is what is left over when the seasonal
and trend-cycle components have been subtracted from the data.

Clearly from the decomposed series, we can see that there is an increasing trend and a uniform
seasonality pattern.

The Seasonally adjusted work for AGL is the resulting plot when we remove the seasonal
component from the original data. This can be useful if the variation due to seasonality is not of

primary interest. In our case, we will neglect this since we want to see the work load variation
including the seasonality component.

MONTHLY SEASONAL PLOT (AGF)

Monthly Seasonal Plot of AGL
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A seasonal plot is similar to time series plot except that the data are plotted against the individual
months in which the data were observed. This allows us to understand more clearly the seasonal
pattern and to identify any pattern changes.

In our diagram, throughout the years, we can see that there is an increasing pattern from Feb to
March, and also there is an annually pattern that can be drawn from May — December. In this case,

we would like to examine and investigate on the relationship of data points from Jan-Feb and
March-April-May. There might be an unusual event or scenario happened during these times, if this
scenario is uncontrollable then we will leave these data points, else, if we know that those events
were just special and isolated cases, then we can proceed on correcting our data points to
reflected value during that time. In our case, we will not correct any data point.




ACF

GENERATE ACF AND PACF PLOTS (AGF)
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The autocorrelation function measures the relationship between variables for different values.
The partial autocorrelation function plot is useful for identifying non-stationary time series. For a
stationary time series, the PACF will drop to zero relatively quickly while the PACF of non-
stationary data decreases slowly. Also this is useful in selecting the appropriate parameters for
ARIMA method.

In out example, we can see that we don’t have a stationary time series data.

The next part of our project discusses about the different forecast models and the process how to
choose the best model to represent our time series data.

The best model to use depends on, but not limited to the ff: availability of historical data, strength of
relationships of parameters used, existence of trends, seasonality and noises. It is common to
compare two or three potential models, and the best model should have the lowest absolute
percentage error.

Since the current time series that we have is a non-stationary, we will proceed with different non-
stationary forecast models.




FORECAST MODEL: SIMPLE EXPONENTIAL SMOOTHING

Simple Exponential Smoothing is the simplest of all the exponential smoothing methods. This is
also known as the Single Exponential Smoothing. This method uses a smoothing constant «. This
smoothing constant is chosen close to 0 if we want to smoothen out unwanted irregular
components and close to 1 if we want to use this method for forecasting. In our case, we will use
x=109

This method is suited for data with no trend and seasonal patterns (stationary data).

We will use R studio program to generate the results of this forecast model.

Point Forecast Lo80 Hi80 Lo9 Hig9s
Jun 2013 708.9631 649.1459 768.7804 617.4806 B800.4457
Jul 2013 726.5131 665.5113 787.5150 633.2188 B819.8074
Aug 2013 644.0631 581.8992 706.2270 548.9916 739.1345
Sep 2013 B6B7.8214 624.5168 751.1260 591.0054 784.6374
Oct 2013 750.3297 685.9046 B814.7548 651.8000 B48.8594
Nov 2013 B6B0.1713 614.6448 745.6978 579.9572 780.3854
Dec 2013 724.3463 B657.7367 790.9559 622.4756 B26.2170
Jan 2014 B616.7713 549.0858 684.4467 513.2706 720.2720
Feb 2014 623.4462 554.7215 692.1710 518.3408B 728.5517
Mar 2014 783.0795 713.3213 BbH2.B378 676.3935 BBI.7656
> accuracy(fcast2)
ME RMSE MAE MPE MAPE MASE
-B.7507279 46.3290317 37.4377380 1.0199311 6.3993757 0.6697577

Forecast from Simple Exponential Smoothing
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FORECAST MODEL: HOLT’S EXPONENTIAL SMOOTHING

Holt (1957) extended simple exponential smoothing to allow forecasting data with a trend. This
method involves a forecast equation and two smoothing equations. The two smoothing parameters
will take values close to 1.

We will use R studio program to generate the results of this forecast model.

Point Forecast Lo 80 Hi80 Logs Hi 95

Jun 2013 745.4155 612.89996 877.9309 542.75049 948.0804
Jul 2013 758.1817 488.92758 1027.4358 346.39306 1169.9703
Aug 2013 631.3442 257.33688 1005.3516 59.34935 1203.3391
Sep 2013 660.9685 81.64673 1240.2902 -225.02769 1546.9647
Oct 2013 724.3122 -147.44763 1596.0720 -608.92939 2057.5537
Nov 2013 639.1843 -366.37457 1644.7432 -898.68529 2177.0539
Dec 2013 661.4297 -650.15268 1973.0120 -1344.46243 2667.3218
Jan 2014 526.3848 -757.04634 1809.8160 -1436.45377 2489.2235
Feb 2014 495.4514 -962.07584 1952.9788 -1733.64433 2724.5472
Mar 2014 660.9423 -1647.68155 2969.5661 -2869.79319 4191.6778
Apr 2014 543.4222 -1681.38343 2768.2278 -2859.12438 3945.9687

= accuracy(fit3)

ME RMSE MAE MPE MAPE MASE
-2.4118928 101.6402275 69.7403940  -0.8705765 11.8087420 1.2476493

Forecast from Holt's Exponential Smoothing
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FORECAST MODEL: HOLT-WINTERS EXPONENTIAL SMOOTHING

Winter (1960) extended Holt’s method to capture seasonality. This method involves a forecast

equation and 3 smoothing equations (one for the level, trend and seasonality). All the smoothing
parameters should be close to 1.

Since this method now covers seasonality, we must also input the type of seasonality, whether
additive or multiplicative seasonality must be used. Luckily according to Rob Hyndman, that the

Holt-Winters’ additive method and multiplicative method generate almost the same forecast values.

Forecasts from Holt—-Winters' multiplicative method
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We will use R studio program to generate the results of this forecast model.

Point Forecast Lo 80 His0 Lo 95 Hi 95

Jun 2013 743.0111 611.70520 874.3170 542.19607 943.8261
Jul 2013 752.9691 484.51540 1021.4228 342.40459 1163.5336
Aug 2013 625.6112 252.13055 999.0918 54.42186 1196.8005
Sep 2013 654.2817 74.43782 1234.1256 -232.51299 1541.0764
Oct 2013 715.0115 -157.75416 1587.7771 -619.76837 2049.7913
Nov 2013 627.2691 -376.45860 1630.9969 -007.80009 2162.3383
Dec 2013 648.2254 -663.19328 1959.6440 -1357.41637 2653.8671
Jan 2014 513.6928 -768.13481 1795.5204 -1446.69334 2474.0789
Feb 2014 484.1526 -978.23736 1946.5426 -1752.37984 2720.6850
Mar 2014 642.6077 -1669.84315 2955.0585 -2893.98067 4179.1960

= accuracy(fit4)

ME RMSE MAE MPE MAPE MASE
-2.5042946 101.6594075 70.0914768 -0.8804078 11.8632796  1.2539301
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FORECAST MODEL: Exponential Smoothing (ETS)

We have seen that adding the seasonal component makes 2 variations of model — additive and

multiplicative. In general, a time series data can have 5 variations of trend component (None,
additive, additive damped, multiplicative and multiplicative damped) and 3 variations of seasonal
component (none, additive and multiplicative) and 2 variations for error component.

Hence we have a total of 30 smoothing methods.

Using R programming, we can call out the ETS function to give us the optimized smoothing
method to forecast our given time series data.

Here is the algorithm followed by R studio. It will apply the data in each of 30 models (given that
the model is appropriate to the data). It will optimize the parameters and initial values It will then
select the best method using AIC

AIC = -2 (log)likelihood + p; where p is the number of parameters.
After selecting the method, it produces the forecast values and obtain the prediction intervals using
underlying state space model.

We will use R studio program to generate the results of this forecast model.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jun 2013 690.0441 647.6325 T32.4557 625.1811 754.9070
Jul 2013 721.6861 679.2729 764.0994 656.8206 7B6.5516
Aug 2013 641.8264 599.4114 684.2413 576.89582 706.6945
Sep 2013 672.1621 629.7454 714.5788 607.2913 737.0329
Oct 2013 ¥13.3185 670.9000 755.7370 B648.4449 778.1921
Mov 2013 670.0287 627.6084 7T12.4491 605.1524 734.9051
Dec 2013 725.8046 683.3823 768.2269 660.9253 790.6839
Jan 2014 639.7104 597.2862 682.1346 574.8282 704.5927
Feb 2014 615.3594 E72.9332 657.7B56 550.4741 680.2447
Mar 2014 751.4605 709.0323 793.8888 68B6.5721 B816.3490
Apr 2014 724.0100 681.5796 766.4403 659.1183 78B8.9016

= accuracy|fcasty)

ME RMSE MAE MPE MAPE MASE
21604522 33.0939541 25.6076269 0.1185396 4.7472992 0.4581181

= =fit7
ETS(A A A)
Call:
eta(y = MHS51.ts)
Smoothing parameters:
alpha = 0.0086
beta = 1e-04
gamma = 0.0018
Initial states:
| = 4412912
b = 5.3451
5=-50.4758 32.071 -18.3994 30217 -5.5958 -30.5621 54 6952
25,3929 7 4718 88081 41.5511 -B8.174
AlC= 459.5032

AlCc= 483.1554
BIC=486.5253




Looking at the forecast detail, R studio categorized our data having additive trend, additive
seasonality and additive error component. Hence we have used in particular the Additive Holt-

Winter’'s method with additive errors.

Forecasts from ETS(A.A.A)
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FORECAST MODEL: ARIMA

While exponential smoothing models were based on trend and seasonality in the data, ARIMA
models aim to describe the autocorrelations. This method is also known as Box — Jenkins method.

ARIMA method involves solving 3 parameters — number of autocorrelation parameters, number of
moving average parameters and number of differencing. But since we are using R studio, we will

opt to go the automated algorithm.

|

1. Plot the data. ldentify
unusual observations.
Understand patterns.

|

Select model
order yourself.

2. If necessary, use a Box-
Cox transformation to
stabilize the variance.

/Jse automated
algorithm.

3. If necessary, difference
the data until it appears

stationary. Use unit-root
tests if you are unsure.

|

4. Plot the ACF/PACF of
the differenced data and
try to determine pos-
sible candidate modeils.

and use the AIC_ to
search for a better model.

5. Try your chosen model(s) )

J

|

Use auto.arima() to find
the best ARIMA model
for your time series.

[
l

6. Check the residuals
from your chosen model
by plotting the ACF of the
residuals, and doing a port-
manteau test of the residuals.

|
J

l

Do the
residuals
took like

white
noise?

l yes

|

7. Calculate forecasts.




Point Forecast Lo 80 Hi80 Lo9 Higs

Jun 2013 711.4179 B642.6772 7B0.1585 606.2881 B816.5477
Jul 2013 699.4662 629.6566 769.2758 592.7016 B06.2308
Aug 2013 672.2008 598.3484 746.0532 559.2534 785.1482
Sep 2013 696.0723 610.7254 7B1.4192 565.5455 B826.5991
QOct 2013 698.1753 610.1871 7B86.1635 563.6090 832.7416
Mov 2013 661.3858 568.5573 754.2143 519.41659 B03.3548
Dec 2013 698.5517 599.8239 797.2795 547.5605 B49.5428
Jan 2014 694.5153 592.3769 796.6537 538.3081 850.7225
Feb 2014 638.8185 532.2898 745.3472 475.8969 801.7401
Mar 2014 750.3988 639.5492 B861.2484 580.8690 919.9287
Apr 2014 723.1267 608.7284 B837.5251 548.1696 B898.0839

:a- = fith

;arias,: MHS1.1s

ARIMAZT,0H1,0,00[12]

Coefficiants:

arl ar2 sar
-0.8230 -0.5037 04535

5.8, 0.1506 0.1433 01754

sigma®2 astimated as 2877: log likelihood=-212.51

AIC=433.1 AlICc=434.19 BIC=435.67

In this case, we have used ARIMA (2,1,0)
> accuracy(fcasts)
ME RMSE MAE MPE MAPE MASE
13.1529699 52.9639372 41.2837304 1.8896506 7.5237535 0.7385621

Forecasts from ARIMA(2,1,0)(1,0,0)[12]
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ACF

In time series modelling, residuals should follow a white noise process, especially for ARIMA
method.

CHECKING FOR WHITE NOISE PROPERTY OF THE RESIUALS
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Residuals from the ARIMA method
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PERFORMANCE BOX TEST

> Box.test(res,lag=10,fitdf=0, type="Lj”) Box-Ljung test

data: res
X-squared = 3.3076, df = 10, p-value = 0.9732

-50

0 50

res

T 1
100 150

« Probability value of Box test is 0.9871 which is greater than alpha (0.05), we do not Reject Ho. The
ARIMA model does not exhibit lack of fit.




FORECAST MODEL: NNA

Artificial neural networks are forecasting methods that are based on simple mathematical models
of the brain. They allow complex nonlinear relationships between the response variable and its
predictors.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec 2013
605.2074 615.3558 634.3437 591.9618 621.3834 633.5292 560.0005

= accuracy(fcasté)

ME RMSE MAE MPE MAPE MASE
-0.07409826 47.94258609 36.95738750 -0.69328923 6.42031736 0.66116427

Forecasts from NNAR(2.1)
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SUMMARY

Forecast Model

Simple Exponential  6.3993757
Smoothing

Holt Exponential 11.8087420

Holt-Winters 11.8632796
ARIMA 7.5237535
Neural Network 6.42031736
ETS 47472992

0.6697577

1.2476493

1.2539301

0.7385621

0.66116427

0.4581181

BIC

433.01 439.67 434.19

458.5032 483.1554 486.5253

Based on different accuracy criteria, we will use ETS as our forecast model.







