TIME SERIES PROJECT by Gabriel Paolo Dino

INTRODUCTION

In a business setting, we want to maximize our resources, to cut out cost but not in the expense of the quality of service we offer to the customers and as well as the well-fare of the workers. To be able to meet the minimum requirement of this scenario, we have to have a little bit of knowledge about WORK FORCE OPTIMIZATION.

The main idea in Work force optimization is all about Business Forecasting. Business Forecasting is the ability to predict the future as accurately as possible, given all the information available including historical data and forecasts (Hyndman, 2013). We try to do this for us to be able to organize future activities trying to incorporate rooms for uncertainties, to be prepared on the possible situation of the business in the future and for effective management.

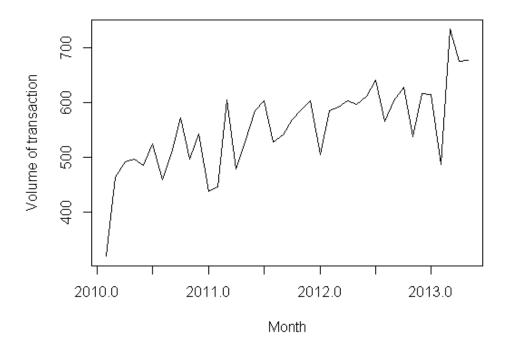
Now, we will look at the health insurance claims data of LoveYourSelf Insurance Company. A certain team in the company handles these medical insurance claims. They review all the transaction requests from the hospital and send a feedback whether the request is approved or denied.

- Transactions in claiming insurance benefits
 - Additional Guarantee Letter (AGL) request for admission
 - Top Up request to upgrade the approved medical claim
 - Final Guarantee Letter (FGL) final transaction for discharge
- Here is the Health Services Historical Claims Data categorized based on their transaction type.

	Month	AGL	TopUp	FGL				
1	2010 02	319	42	290	2	1	2011 1	1 2011 10 569
2	2010 03	463	34	388	22		2011 1	2011 11 587
3	2010 04	491	25	388	23		2011 1	2011 12 602
4	2010 05	496	51	381	24	20	12 0	12 01 505
5	2010 06	485	39	380	25	201	2 0	2 02 585
6	2010 07	524	41	392	26	2012	0	03 592
7	2010 08	458	29	366	27	2012 0	D	04 602
8	2010 09	508	35	354	28	2012 0		5 596
9	2010 10	571	69	450	29	2012 0	6	611
10	2010 11	497	47	392	30	2012 0	7	640
11	2010 12	542	45	452	31	2012 0	в	565
12	2011 01	437	41	393	32	2012 0	9	602
13	2011 02	445	4.4	323	33	2012 1	0	627
14	2011 03	604	30	452	34	2012 1	1	537
15	2011 04	479	39	367	35	2012 1	2 6	516
16	2011 05	533	40	383	36	2013 0	1 61	14
17	2011 06	585	62	407	37	2013 0	2 48	7
18	2011 07	603	61	458	38	2013 0	3 73	3
19	2011 08	528	76	395	39	2013 0	4 67	5
20	2011 09	540	47	395	40	2013 0	5 671	7

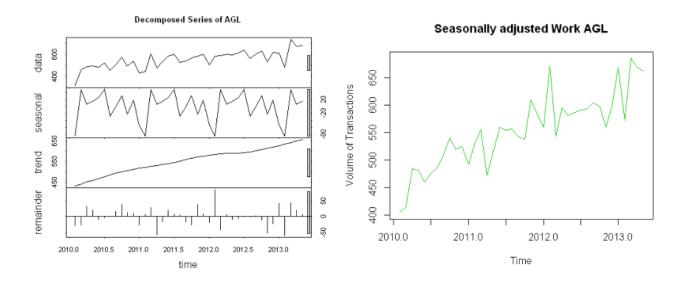
TIME SERIES PLOT

For time series data, the obvious graph to start with is a time plot. That is, the observations are plotted against the time of observation, with consecutive observations joined by straight lines. As we can see; the time series has an increasing pattern.



Now we graph the monthly seasonal plots of each claim per transaction type. We will first proceed with AGL

TREND AND SEASONALITY (AGL)



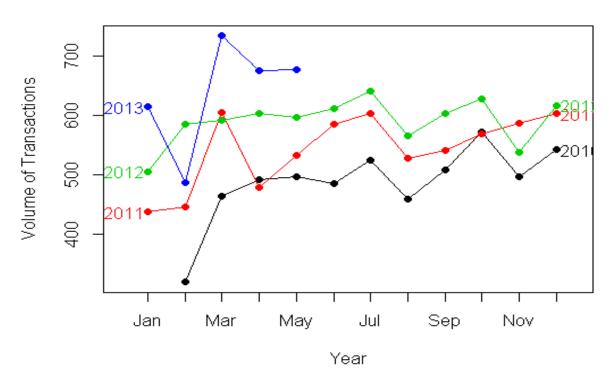
The time series plot can be decomposed to clearly see the seasonality component, trend component and the remainder component. All three components are shown in the bottom three

panels. These three components can be added together to reconstruct the data shown in the top panel. The remainder component shown in the bottom panel is what is left over when the seasonal and trend-cycle components have been subtracted from the data.

Clearly from the decomposed series, we can see that there is an increasing trend and a uniform seasonality pattern.

The Seasonally adjusted work for AGL is the resulting plot when we remove the seasonal component from the original data. This can be useful if the variation due to seasonality is not of primary interest. In our case, we will neglect this since we want to see the work load variation including the seasonality component.

MONTHLY SEASONAL PLOT (AGF)

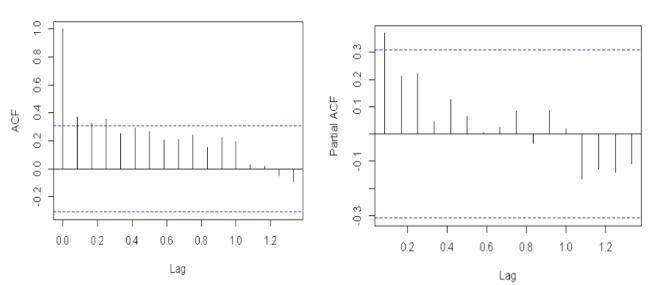


Monthly Seasonal Plot of AGL

A seasonal plot is similar to time series plot except that the data are plotted against the individual months in which the data were observed. This allows us to understand more clearly the seasonal pattern and to identify any pattern changes.

In our diagram, throughout the years, we can see that there is an increasing pattern from Feb to March, and also there is an annually pattern that can be drawn from May – December. In this case, we would like to examine and investigate on the relationship of data points from Jan-Feb and March-April-May. There might be an unusual event or scenario happened during these times, if this scenario is uncontrollable then we will leave these data points, else, if we know that those events were just special and isolated cases, then we can proceed on correcting our data points to reflected value during that time. In our case, we will not correct any data point.

GENERATE ACF AND PACF PLOTS (AGF)



Autocorrelation Function AGL

Partial Autocorrelation Function AGL

The autocorrelation function measures the relationship between variables for different values. The partial autocorrelation function plot is useful for identifying non-stationary time series. For a stationary time series, the PACF will drop to zero relatively quickly while the PACF of non-stationary data decreases slowly. Also this is useful in selecting the appropriate parameters for ARIMA method.

In out example, we can see that we don't have a stationary time series data.

The next part of our project discusses about the different forecast models and the process how to choose the best model to represent our time series data.

The best model to use depends on, but not limited to the ff: availability of historical data, strength of relationships of parameters used, existence of trends, seasonality and noises. It is common to compare two or three potential models, and the best model should have the lowest absolute percentage error.

Since the current time series that we have is a non-stationary, we will proceed with different nonstationary forecast models.

FORECAST MODEL: SIMPLE EXPONENTIAL SMOOTHING

Simple Exponential Smoothing is the simplest of all the exponential smoothing methods. This is also known as the Single Exponential Smoothing. This method uses a smoothing constant \propto . This smoothing constant is chosen close to 0 if we want to smoothen out unwanted irregular components and close to 1 if we want to use this method for forecasting. In our case, we will use $\propto = 0.9$

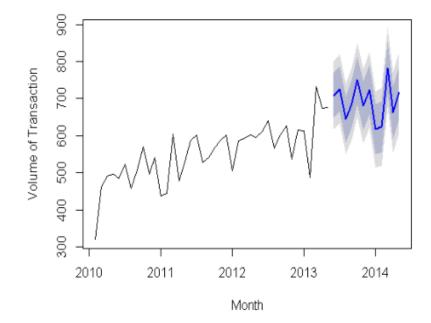
This method is suited for data with no trend and seasonal patterns (stationary data).

We will use R studio program to generate the results of this forecast model.

	Point Forecast	Lo 80 Hi 8	0 Lo 95	Hi 95	
Jun 2013	708.9631	649.1459	768.7804	617.4806	800.4457
Jul 2013	726.5131	665.5113	787.5150	633.2188	819.8074
Aug 2013	644.0631	581.8992	706.2270	548.9916	739.1345
Sep 2013	687.8214	624.5168	751.1260	591.0054	784.6374
Oct 2013	750.3297	685.9046	814.7548	651.8000	848.8594
Nov 2013	680.1713	614.6448	745.6978	579.9572	780.3854
Dec 2013	724.3463	657.7367	790.9559	622.4756	826.2170
Jan 2014	616.7713	549.0958	684.4467	513.2706	720.2720
Feb 2014	623.4462	554.7215	692.1710	518.3408	728.5517
Mar 2014	783.0795	713.3213	852.8378	676.3935	889.7656

> accuracy	(fcast2)				
ME - 6.7507279		 MPE 1.0199311	MAPE 6.3993757	MASE 0.6697577	

Forecast from Simple Exponential Smoothing



FORECAST MODEL: HOLT'S EXPONENTIAL SMOOTHING

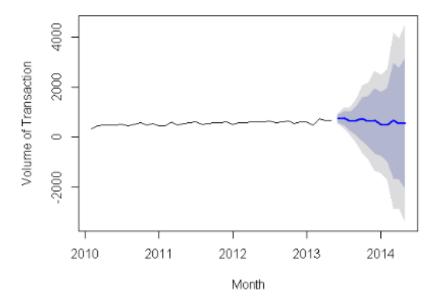
Holt (1957) extended simple exponential smoothing to allow forecasting data with a trend. This method involves a forecast equation and two smoothing equations. The two smoothing parameters will take values close to 1.

We will use R studio program to generate the results of this forecast model.

	Point Forecast	Lo 80 Hi 80 Lo 95 Hi 95
Jun 2013	745.4155	612.89996 877.9309 542.75049 948.0804
Jul 2013	758.1817	488.92758 1027.4358 346.39306 1169.9703
Aug 2013	631.3442	257.33688 1005.3516 59.34935 1203.3391
Sep 2013	660.9685	81.64673 1240.2902 -225.02769 1546.9647
Oct 2013	724.3122	-147.44763 1596.0720 -608.92939 2057.5537
Nov 2013	639.1843	-366.37457 1644.7432 -898.68529 2177.0539
Dec 2013	661.4297	-650.15268 1973.0120 -1344.46243 2667.3218
Jan 2014	526.3848	-757.04634 1809.8160 -1436.45377 2489.2235
Feb 2014	495.4514	-962.07594 1952.9788 -1733.64433 2724.5472
Mar 2014	660.9423	-1647.68155 2969.5661 -2869.79319 4191.6778
Apr 2014	543.4222	-1681.38343 2768.2278 -2859.12438 3945.9687

> accuracy	(fit3)					
ME	RMSE	MAE	MPE	MAPE	MASE	
-2.4118928	101.6402275	69.7403940	-0.8705765	11.8087420	1.2476493	

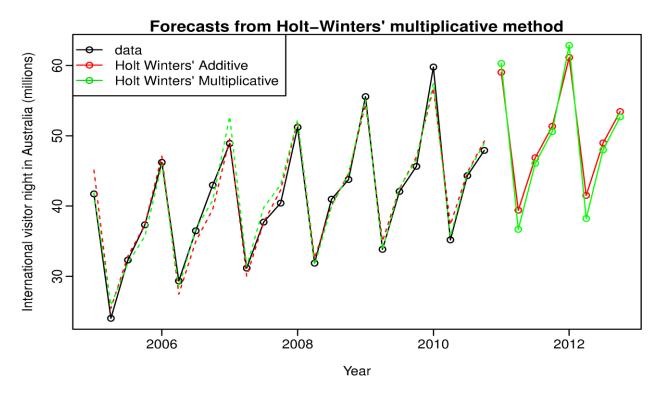
Forecast from Holt's Exponential Smoothing



FORECAST MODEL: HOLT-WINTERS EXPONENTIAL SMOOTHING

Winter (1960) extended Holt's method to capture seasonality. This method involves a forecast equation and 3 smoothing equations (one for the level, trend and seasonality). All the smoothing parameters should be close to 1.

Since this method now covers seasonality, we must also input the type of seasonality, whether additive or multiplicative seasonality must be used. Luckily according to Rob Hyndman, that the Holt-Winters' additive method and multiplicative method generate almost the same forecast values.



We will use R studio program to generate the results of this forecast model.

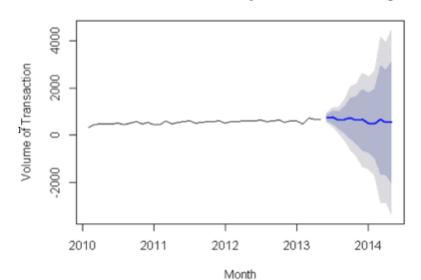
2.5042946 101.6594075 70.0914768

	Point Forecast	Lo 80 H	Hi 80	Lo 95	Hi 95	
Jun 2013	743.0111	611.70	520 874.	3170	542.19607	943.8261
Jul 2013	752.9691	484.51	540 102	1.4228	342.40459	1163.5336
Aug 2013	625.6112	252.13	3055 999	.0918	54.42186 1	196.8005
Sep 2013	654.2817	74.43	782 1234	1.1256	-232.51299	1541.0764
Oct 2013	715.0115	-157.75	5416 158	7.7771	-619.76837	2049.7913
Nov 2013	627.2691	-376.45	5869 163	0.9969	-907.80009	2162.3383
Dec 2013	648.2254	-663.19	328 195	9.6440	-1357.4163	7 2653.8671
Jan 2014	513.6928	-768.13	3481 179	5.5204	-1446.69334	4 2474.0789
Feb 2014	484.1526	-978.23	3736 194	6.5426	-1752.37984	4 2720.6850
Mar 2014	642.6077	-1669.8	4315 295	55.0585	5-2893.9806	7 4179.1960
> accuracy	(fit4)					
ME	RMSE	MAE	M	PE	MAPE	MASE

-0.8804078

11.8632796

1.2539301



Forecast from Holt's Exponential Smoothing

FORECAST MODEL: Exponential Smoothing (ETS)

We have seen that adding the seasonal component makes 2 variations of model – additive and multiplicative. In general, a time series data can have 5 variations of trend component (None, additive, additive damped, multiplicative and multiplicative damped) and 3 variations of seasonal component (none, additive and multiplicative) and 2 variations for error component. Hence we have a total of 30 smoothing methods.

Using R programming, we can call out the ETS function to give us the optimized smoothing method to forecast our given time series data.

Here is the algorithm followed by R studio. It will apply the data in each of 30 models (given that the model is appropriate to the data). It will optimize the parameters and initial values It will then select the best method using AIC

AIC = -2 (log)likelihood + p; where p is the number of parameters. After selecting the method, it produces the forecast values and obtain the prediction intervals using underlying state space model.

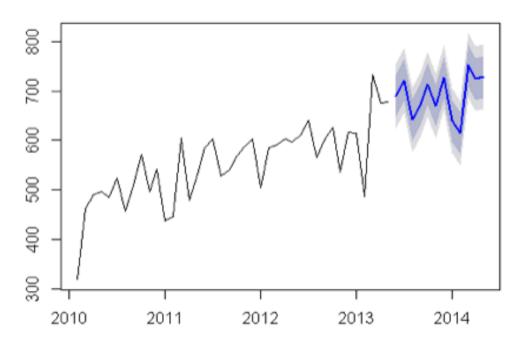
We will use R studio program to generate the results of this forecast model.

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jun 2013	690.0441	647.6325	732.4557	625.1811	754.9070
Jul 2013	721.6861	679.2729	764.0994	656.8206	786.5516
Aug 2013	641.8264	599.4114	684.2413	576.9582	706.6945
Sep 2013	672.1621	629.7454	714.5788	607.2913	737.0329
Oct 2013	713.3185	670.9000	755.7370	648.4449	778.1921
Nov 2013	670.0287	627.6084	712.4491	605.1524	734.9051
Dec 2013	725.8046	683.3823	768.2269	660.9253	790.6839
Jan 2014	639.7104	597.2862	682.1346	574.8282	704.5927
Feb 2014	615.3594	572.9332	657.7856	550.4741	680.2447
Mar 2014	751.4605	709.0323	793.8888	686.5721	816.3490
Apr 2014	724.0100	681.5796	766.4403	659.1183	788.9016

> accuracy	y(fcast7)					
ME	RMSE	MAE	MPE	MAPE	MASE	
2.1604522	33.0939541	25.6076269	0.1185396	4.7472992	0.4581181	

```
≻ > fit7
ETS(A,A,A)
Call:
  ets(y = MHS1.ts)
   Smoothing parameters:
                  alpha = 0.0086
                  beta = 1e-04
                  gamma = 0.0018
  Initial states:
                  I = 441.2912
                  b = 5.3451
                  s=-59.4758 32.071 -18.3994 30.217 -5.5958 -30.5621 54.6952
                      28.3929 7.4718 8.8081 41.5511 -89.174
AIC= 459,5032
AICc= 483.1554
BIC=486.5253
```

Looking at the forecast detail, R studio categorized our data having additive trend, additive seasonality and additive error component. Hence we have used in particular the Additive Holt-Winter's method with additive errors.

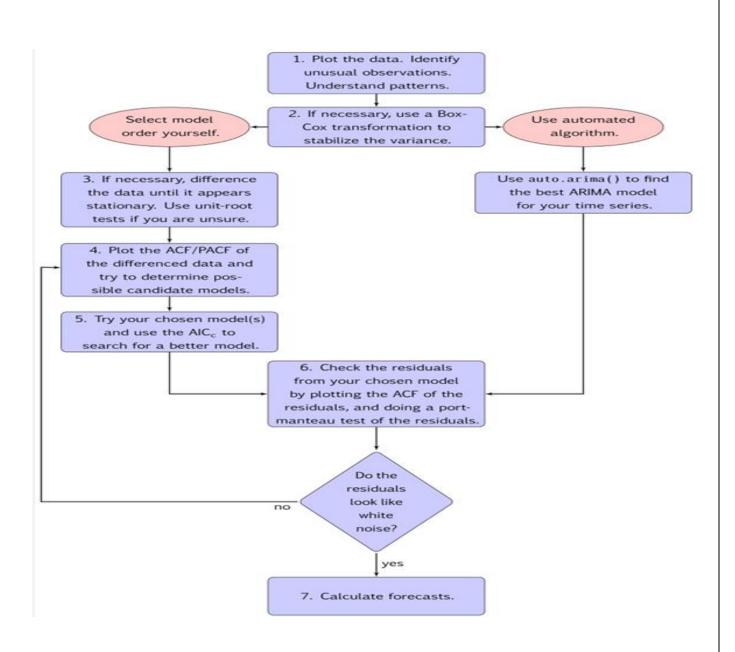


Forecasts from ETS(A,A,A)

FORECAST MODEL: ARIMA

While exponential smoothing models were based on trend and seasonality in the data, ARIMA models aim to describe the autocorrelations. This method is also known as Box – Jenkins method.

ARIMA method involves solving 3 parameters – number of autocorrelation parameters, number of moving average parameters and number of differencing. But since we are using R studio, we will opt to go the automated algorithm.



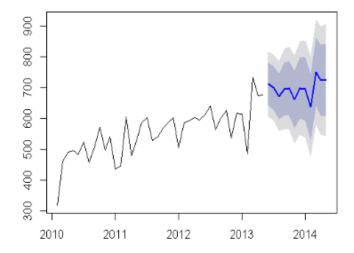
	Point Forecast	Lo 80	Hi 80 Lo	o 95 Hi 9	95
Jun 2013	711.4179	642.6772	780.1585	606.2881	816.5477
Jul 2013	699.4662	629.6566	769.2758	592.7016	806.2308
Aug 2013	672.2008	598.3484	746.0532	559.2534	785.1482
Sep 2013	696.0723	610.7254	781.4192	565.5455	826.5991
Oct 2013	698.1753	610.1871	786.1635	563.6090	832.7416
Nov 2013	661.3858	568.5573	754.2143	519.4169	803.3548
Dec 2013	698.5517	599.8239	797.2795	547.5605	849.5428
Jan 2014	694.5153	592.3769	796.6537	538.3081	850.7225
Feb 2014	638.8185	532.2898	745.3472	475.8969	801.7401
Mar 2014	750.3988	639.5492	861.2484	580.8690	919.9287
Apr 2014	723.1267	608.7284	837.5251	548.1696	898.0839

AIC=433.01	AICc=434.19	BIC=439.67		
sigma^2 estin	nated as 2877: log likeli	hood=-212 51		
S. O .	0.1506	0.1433	0.1754	
	-0.8230	-0.5037	0.4535	
	ar1	ar2	sar1	
Coefficients:				
ARIMA(2,1,0)				
∽ Series: MHS1	to.			
> > fit5				

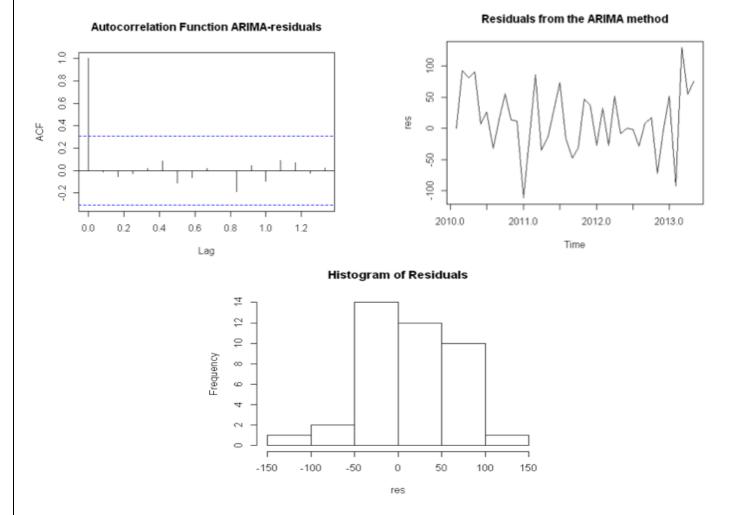
In this case, we have used ARIMA (2,1,0)

> accuracy	(fcast5)				
ME	RMSE	MAE	MPE	MAPE	MASE
13.1529699	52.9639372	41.2837304	1.8896506	7.5237535	0.7385621

Forecasts from ARIMA(2,1,0)(1,0,0)[12]



In time series modelling, residuals should follow a white noise process, especially for ARIMA method.



CHECKING FOR WHITE NOISE PROPERTY OF THE RESIUALS

PERFORMANCE BOX TEST

> Box.test(res,lag=10,fitdf=0, type="Lj") Box-Ljung test

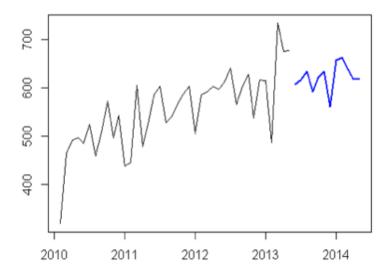
data: res X-squared = 3.3076, df = 10, p-value = 0.9732

• Probability value of Box test is 0.9871 which is greater than alpha (0.05), we do not Reject Ho. The ARIMA model does not exhibit lack of fit.

FORECAST MODEL: NNA

Artificial neural networks are forecasting methods that are based on simple mathematical models of the brain. They allow complex nonlinear relationships between the response variable and its predictors.

> accurac	cy(fcast6)				
	(6				
05.2074 015.	.5556 054.5	+37 391.90180	621.3834 633.529	2 300.0003	



SUMMARY

Forecast Model	MAPE	MASE	AIC	BIC	AICc
Simple Exponential Smoothing	6.3993757	0.6697577			
Holt Exponential	11.8087420	1.2476493		-	
Holt-Winters	11.8632796	1.2539301	-	-	-
ARIMA	7.5237535	0.7385621	433.01	439.67	434.19
Neural Network	6.42031736	0.66116427		•	
ETS	4.7472992	0.4581181	459.5032	483.1554	486.5253

Based on different accuracy criteria, we will use ETS as our forecast model.

