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Introduction  

Global temperature is the popular topic what government scientists concern. There are a lot of news told about 

the relationship of global temperature change and sea level rise. Since many country are a little sea island, if the 

sea level continue rising up, they may flood by rising sea levels. Due to this reason, we want to know how the 

global temperature changing.  

 

Description of Data  

Our data is from National Oceanic and Atmospheric Administration (NOAA), National Climatic Data Center. 

The first data is monthly global land temperature anomalies (degrees C). The second data is the monthly global 

ocean temperature anomalies (degrees C). “Temperature anomaly” means a departure from a reference value or 

long-term average. A positive anomaly indicates that the observed temperature was warmer than the reference 

value, while a negative anomaly indicates that the observed temperature was cooler than the reference value. Our 

data is during 1915 to 2014 year. 

 

Analysis of Data  

 

I. Analysis of Global Land Temperature Anomalies Data  

We analyze land temperature data as follows. First, we observe time series plot, SACF, SPACF, EACF of the 

raw data: 

 

FIGURE 1-1：Land Temperature Data 
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FIGURE 1-2：The SACF for The Original Values 

 

FIGURE 1-3：The SPACF for The Original Values 

 

FIGURE 1-4：The EACF for The Original Values 

 

 



 From the time series plot, there is an upward trend at the late period. The SACF and SPACF at lag 1 is nonzero, 

but not very close to 1, so we consider two ways. First way is to observe the original values’ EACF. The EACF 

shows that we can assume original values is ARMA(1,1) model. 

 

Lt − 0.9514𝐿𝑡−1 = 𝑎𝑡 − 0.6262 𝑎𝑡−1                                model (1) 

 

Second way is to consider the first differences of the original values. 

 

FIGURE 1-5：The SACF for The First Differences 

 

FIGURE 1-6：The SPACF for The First Differences 

 

 

 The SACF and SPACF for the series of first differences (1-B) is shown in Fig1-5 and Fig1-6. We find that the 

SACF cuts off after lag one, while the SPACF tails off. t L  

This is indicative of an ARIMA(0,1,1) model. 



 

Lt − 𝐿𝑡−1 = 𝑎𝑡 − 0.706 𝑎𝑡−1                                model (2) 

 

The series of first differences is stationary, but the results of the analysis are not as well as ARMA (1,1). The 

estimator of ϕ1 in model(1) is close to 1, it is seem to the first differences, so we would tentatively to choose 

model(1). 

 

FIGURE 1-7：The SACF for Residuals of ARMA(1,1) 

 

FIGURE 1-8：The EACF for Residuals of ARMA(1,1) 

 

 

By the SACF of model(1)’s residuals does not like white noise, while from the EACF of residuals, it is obvious 

ARMA (1,1) model. Thus, the revised model is 

 

(1 − 0.9696B)(1 − 0.3793B)Lt = (1 − 0.9993𝐵)(1 − 0.6925𝐵)𝑎𝑡       

 

The residual autocorrelations for this revised model do not exceed twice their standard errors. Furthermore, the 

chi-square statistic applied to the first 24 autocorrelation is  = 21.4     −   .  
 = 32.67  , we cannot reject 



the hypothesis that the residuals are a white noise series.  

From model(3), the time series plot of residuals and outliers detection, there is 5 additive outliers can be found as 

Table 1.1. 

 

FIGURE 1-9：The Residuals of ARMA(1,1) 

 

TIME ESTIMAT T VALUE TYPE 

372 1.28 4.61 AO 

1191 1.16 4.2 AO 

314 1.13 4.13 AO 

252 -1.12 -4.13 AO 

975 1.12 4.13 AO 

TABLE 1-1：The Outliers of Model(3) 

Consider intervention analysis  

 

Lt =
(1−𝜃1𝐵)(1−𝜃2𝐵)

(1−𝜙1𝐵)(1−𝜙2𝐵)
𝑎𝑡 + 𝑤1𝑥1 + 𝑤 𝑥 + 𝑤3𝑥3 +w 𝑥 + 𝑤 𝑥                 model(4) 

x1 = {
1      𝑡 = 372
   0       𝑜. 𝑤.        

; x = {
1      𝑡 = 1191
   0       𝑜. 𝑤.        

 ;  x3 = {
1      𝑡 = 314
   0       𝑜. 𝑤.        

; x = {
1      𝑡 = 252
   0       𝑜. 𝑤.        

; x = {
1      𝑡 = 975
   0       𝑜. 𝑤.        

 

 

But the performance of the residuals of model (4) does not like white noise and  (24) = 48.6     −   .  
 =

24.99 , we finally consider model (3) as the land temperature time series model.  

 PARAMETER VALUE STD. ERROR T  VALUE RESIDUAL 

STD. ERROR 

Model(1) 𝜃1 0.6262 0.0288 21.77 0.3005 

 𝜙1 0.9514 0.0117 81.59  

Model(2) 𝜃1 0.7061 0.0210 33.58 0.3031 

Model(3) 𝜃1 0.9606 0.0149 64.49 0.2930 

 𝜃  0.3793 0.0680 5.58  

 𝜙1 0.9993 0.0035 282.44  

 𝜙  0.6925 0.0614 11.28  

TABLE 1-2 ：Summary for Models 



 

Compare the actual data of January 2015 to November and 95% prediction confidence intervals. The actual data 

are included in the prediction confidence intervals. It means that the forecasting results are good, so we conclude 

the model (3) adequately describes the land temperature time series. 

 

 
FIGURE 1-10：Forecasting Results 

 

 

TIME 

 

FORECAST 
STD. 

ERROR 

ACTUAL 

DATA 

Jan-15 0.8295 0.293 0.8786 

Feb-15 0.8275 0.3106 0.869 

Mar-15 0.8259 0.3204 0.8629 

Apr-15 0.8247 0.3262 1.0249 

May-15 0.8236 0.33 0.6754 

Jun-15 0.8227 0.3325 0.7006 

Jul-15 0.8219 0.3344 0.529 

Aug-15 0.8212 0.3359 0.7385 

Sep-15 0.8205 0.3372 0.9657 

Oct-15 0.8199 0.3383 0.7986 

Nov-15 0.8193 0.3392 0.8122 

TABLE 1-3：Forecasts 

 

 

 

 

 

 

 



II. Analysis of Global Ocean Temperature Anomalies Data  

We analyze ocean temperature data as follows. First, we observe time series plot, SACF, SPACF of the raw data: 

 

 

FIGURE 2-1：Ocean Temperature Data 

 

FIGURE 2-2：The SACF for The Original Values 

 

FIGURE 2-3：The SPACF for The Original Values 



 

FIGURE 2-4：The First Differences 

 

FIGURE 2-5：The EACF for The First Differences 

 
FIGURE 2-6：The Differences(1,12) 



 

FIGURE 2-7：The SACF for The Differences(1,12) 

 

FIGURE 2-8：The SPACF for The Differences(1,12) 

 

 

According as the time series plot、SACF and SPACF plot of original data, we found it is not stationary and cut 

off after lag1. We difference the original data. Hence, from the time series plot、SACF、SAPCF and EACF of the 

difference global temperature monthly series, we can consider two models.  

 

According to EACF(Fig 2-7), the ARIMA(0,1,1) model is entertained, it would be 

 

(1 − B) t = (1 + 0.069𝐵)𝑎𝑡                                           model(1) 

 

Observe SACF plot of the difference data, the overall impression is that the autocorrelations are those of a white 

noise process, although the autocorrelations at lag 1 and 5 are relatively large. We would suggested an alternative 



model 

 

(1 − B) t = (1 + 0.0675𝐵 − 0.0952𝐵
 )𝑎𝑡                               model(2) 

 

We also try seasonal difference. SACF shows the only sample autocorrelations which exceed twice their standard 

errors are �̂�1  , and thus a tentative model might be  

 

(1 − B)(1 − 𝐵 ) t = (1 − 0.9589𝐵
 )𝑎𝑡                                  model(3) 

 

Compare the models in Table 2-1: 

 

 PARAMETER VALUE STD. ERROR T  VALUE RESIDUAL 

STD. ERROR 

 

Model(1) 𝜃1 -0.0697 0.0288 -2.42   

 𝜃       

     0.03576 37.1 

Model(2) 𝜃1 -0.0675 0.0287 -2.35   

 𝜃  0.0952 0.0286 3.33   

     0.03560 28.5 

Model(3) Θ1  0.9589  0.0086  111.74    

     0.0359 41.1 

TABLE 2-1：Summary for Models 

 

 

From Table 2-1，we can know the residual error of model(2) is 0.0356 and has the smallest Q-value, Q(24)=28.5, 

we think model(2) is more appropriate. 

 
FIGURE 2-9：The Residuals if Model(2) 

 



From Fig 2-11and outlier detection, we find out one outlier. So we consider the Intervention Model. The 

following is model(4): 

 

 t =
1 + 0.0717𝐵 − 0.1023𝐵 

1 − 𝐵
𝑎𝑡 + 0.1597𝑥1    x1 = {

1      𝑡 = 306

   0       𝑜. 𝑤.        
  

 

Outlier is the ocean temperature in 1934/06. Thermohaline circulation in the Atlantic turns stronger in 1934. So 

the temperature is higher than other years. 

 
FIGURE 2-10：The SACF for Residuals of Model(4) 

 

 

FIGURE 2-11：The EACF for Residuals Square of Model(4) 

 

Observe Fig 2-10.the pattern is like white noise and  (24) = 26.8     −3  .  
 = 32.67,so model(4) is 

appropriate. Then, we consider whether the variance of residual from the Model(4) is equal. From Fig 2-11, the 

EACF pattern of residual square shows that it is white noise, so we do not consider GARCH model. The 

confidence interval of forecast contains all the data that we observed during 2015. It indicates the result of 

forecast is great. 



 

 

FIGURE 2-12：Forecasting Results 

 

 

TIME 

 

FORECAST 
STD. 

ERROR 

ACTUAL 

DATA 

Jan-15 0.3967 0.0353 0.358 

Feb-15 0.3965 0.0517 0.3443 

Mar-15 0.3954 0.0641 0.3821 

Apr-15 0.4003 0.0744 0.4292 

May-15 0.3995 0.0835 0.4778 

Jun-15 0.3995 0.0902 0.5721 

Jul-15 0.3995 0.0965 0.5834 

Aug-15 0.3995 0.1024 0.5619 

Sep-15 0.3995 0.1079 0.4926 

Oct-15 0.3995 0.1132 0.5009 

Nov-15 0.3995 0.1183 0.5135 

TABLE 2-2：Forecasts 

 

 

III. Analysis of Vector ARMA models  

We are interested in the structure of the relationship among the land and ocean temperature series, so we consider 

vector ARMA models as follows:  

The sample cross correlation matrices (CCM) for the land and ocean temperature is show in Fig 3-1. The 

persistence of large sample auto- and cross-correlations indicates that the data are not likely to have come from a 

low-order MA model. 

  



 

FIGURE 3-1. Sample Cross-Correlation Matrices for Data 

 

The pattern of the partial auto-regression and related statistics are given in Table 3-1. But it’s still hard to 

tentatively select low-order auto-regression models. 

 

 

 

LAG RESIDUAL 

VARIANCES 

EIGENVAL. 

 OF SIGMA 

CHI-SQ  

TEST 

AIC SIGNIFICANCE 

OF  PARTIAL 

AR COEFF 

1  8.91E-02  1.26E-03  4623.12  -9.089  + +  

 1.27E-03  8.92E-02    . + 

2  8.67E-02  1.25E-03  42.21  -9.118  + .  

 1.26E-03  8.67E-02    . - 

3  8.60E-02  1.24E-03  16.22  -9.125  + .  

 1.26E-03  8.60E-02    - .  

4  8.56E-02  1.24E-03  7.67  -9.125  . .  

 1.25E-03  8.56E-02    . . 

5  8.54E-02  1.24E-03  5.15  -9.123  . .  

 1.25E-03  8.54E-02    . .  

6  8.52E-02  1.22E-03  14.51  -9.129  . .  

 1.24E-03  8.52E-02    - +  

TABLE 3-1. Pattern of Partial Autoregression and Related Statistics for Data 

 

So we consider the method of Extended Cross Correlation Matrices (ECCM) and Smallest Canonical Correlation 

Analysis (SCAN). The pattern of Fig 3-2 and Fig 3-3 suggest it is possibility an ARMA(1,1) model. 



 
FIGURE 3-2. ECCM 

 

 

FIGURE 3-3. SCAN 

 

For this model, (I − ϕB)Zt = C + (I − θB)at were fitted using the conditional likelihood method. The 

estimation results are  

 

C = [
0.005
0.001

]        𝜙 = [
0.771 0.270
0.008 0.976

]   𝜃 = [
0.042 −0.012
0.005 −0.083

]  

 

Then we set zero to those coefficients whose estimates were small compared to their standard errors. The 

restricted model’s estimation results are 

 

C = [
0.005
0.002

]        𝜙 = [
0.773 0.268
0 0.985

]   𝜃 = [
0.449 0
0 −0.077

]  

 

Table 3-2 suggests that the restricted ARMA(1,1) model provides an adequate representation of the data. 

 

 



 

Table 3-2. Pattern of Residual Cross-Correlations after Restricted ARMA(1,1) Model 

 

 1 2 

1 0.085813  

2 0.001159 0.001268 

Table 3-3. Covariance Metric of Residual 

 

The final model implies that the temperature is approximately 

 

(1 − 0.773B)Z1 𝑡 − (0.268𝐵)𝑍  𝑡 = 0.005 + (1 − 0.449𝐵)𝑎1𝑡    

(1 − 0.958B)Z  𝑡 = 0.002 + (1 + 0.077𝐵)𝑎 𝑡   

 

We also consider using first difference of data, but ARMA(1,1) model fit better, and produced a marginally better 

representation. Fig 3-5 shows the predict confidence interval of forecast contains all the data that we observed 

during 2015. It indicates the result of forecast is great. 

 

 

FIGURE 3-5. Actual Data and Predict Confidence Interval 

 

 

 

 

 

 

 

 

 

 



Ⅳ.Conclusion: 

1. The model for global land temperature anomalies series is 

 

(1 − 0.9606B)(1 − 0.03793B)Lt = (1 − 0.993B)(1 − 0.6925B)at   

 

The residual of this model is consistent, so we don’t consider using GARCH model. 

 

2. The model for global ocean land temperature anomalies series is 

 

 t =
1+ . 717𝐵− .1  3𝐵5

1−𝐵
𝑎𝑡 + 0.1597𝑥1    x1 = {

1      𝑡 = 306

   0       𝑜. 𝑤.        
  

 

The residual of this model is consistent, so we don’t consider using GARCH model. 

 

3. For the global land temperature anomalies series Z1𝑡 , we have that 

 

(1 − 0.773B)Z1 𝑡 − (0.268𝐵)𝑍  𝑡 = 0.005 + (1 − 0.449𝐵)𝑎1𝑡  

 

For the global ocean temperature anomalies series 𝑍 𝑡 , we have that 

 

(1 − 0.958B)Z  𝑡 = 0.002 + (1 + 0.077𝐵)𝑎 𝑡 

 

We see that ocean temperature will effect land temperature. About 70% of the Earth's surface is sea water  

and the ocean currents have a major influence on climate and weather. For example, on a larger scale the 

sea acts as a reservoir of heat from the summer, keeping coastal regions milder in the autumn than regions 

inland. So the model reflects the phenomenon of nature. 


