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Introduction 

One of the most important functions that an actuary performs in the 
property/casualty insurance industry is loss reserving whereby the actuary 
determines the present liability associated with future claim payments. 

In this project, we will use classical regression analysis to model these future 
payments. The problem with this kind of analysis is that it assumes constancy of the 
regression parameters (i.e., the 𝛽's) for the entire range of variables; however, this is 
not always an appropiate analysis to model the phenomenon under consideration. 

In order to correct this, we will test the constancy of 𝛽's (i.e., inflation rate and 
payment pattern) using three simulated data sets: 

1. One with a discrete change in inflation rate 

2. One with a discrete change in the payment pattern 



3. One with both changes 

And we will check the constancy of the regression coefficients through the use of 
residual plots. If a coefficient is not constant, we will add a dummy variable to the 
model. So, we will see that this solves the problem that a discrete change will cause in 
the classical regression approach. 

The purpose of this project is to test different scenarios to determine an appropriate 
regression model, when the parameters change over time, that explains the variability 
of paid claims for insurance reserving through the use of dummy variables. 

Description of the data 

The data was simulated using the method described in the project template 
"Regression project template loss development.xls" from the NEAS web site. We 
considered a period of 15 years (i.e., 120 simulated observations). 

Statistical workbook 

The statistical analysis was done in Excel 2010, please refer to the workbook 
"20150721_RA_Project_CRUR.xlsm". 

Excel file sheets: 

Sheet 
Description 

Control_S Simulated values of the stable scenario 

Control_M Regression results of Control_S 

Scenario1_S Simulated values of scenario 1 

Scenario1_M Regression results of Scenario1_S 

Scenario1_SD Simulated values of scenario 1 under the proposed model 

Scenario1_MD Regression results of Scenario1_SD 

Scenario2_S Simulated values of scenario 2 

Scenario2_M Regression results of Scenario2_S 

Scenario2_SD Simulated values of scenario 2 under the proposed model 

Scenario2_MD Regression results of Scenario2_SD 

Scenario3_S Simulated values of scenario 3 

Scenario3_M Regression results of Scenario3_S 

Scenario3_SD Simulated values of scenario 3 under the proposed model 

Scenario3_MD Regression results of Scenario3_SD 



Multiplicative relation and simulation of the data 

Multiplicative model 

Since the geometric decay payment pattern and the inflation rate have a multiplicative 
effect on future claim payments, future paid losses can be modelled with the following 
equation: 

𝑌′|𝐷𝑌, 𝐶𝑌 = 𝛼′ ⋅ (𝛽1′)
𝐷𝑌 ⋅ (𝛽2′)

𝐶𝑌 ⋅ 𝜀′, 

where 𝛼′ is a constant scalar, 𝛽1′ is the geometric decay factor, 𝐷𝑌 is the number of 
development years after the accident, 𝛽2′ is the yearly inflation rate, 𝐶𝑌 is the number 
of calendar years after the initial observation, and 𝜀′ is the error term. 

This model is not linear, but it is inherently linear. To transform a multiplicative 
relation into an additive one, we take logarithms: 

ln(𝑌′|𝐷𝑌, 𝐶𝑌) = ln(𝛼′) + 𝐷𝑌 ⋅ ln(𝛽1′) + 𝐶𝑌 ⋅ ln(𝛽2′) + ln(𝜀′). 

We can restate the above equation if we define 𝑋1 = 𝐷𝑌, 𝑋2 = 𝐶𝑌, 𝑌|𝑋1, 𝑋2 =
ln(𝑌′|𝐷𝑌, 𝐶𝑌), 𝛼 = ln(𝛼′), 𝛽1 = ln(𝛽1′), 𝛽2 = ln(𝛽2′), and 𝜀 = ln(𝜀′). So, the additive 
relation is: 

𝑌|𝑋1, 𝑋2 = 𝛼 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + 𝜀. 

Under this transformation we can now perform linear regression analysis. 

Simulation of 𝒀|𝑿𝟏, 𝑿𝟐 

In order to simulate the logarithm of paid losses (i.e., 𝑌|𝑋1, 𝑋2), we generated the error 
terms using the macro "SimulateUniformRandomNumbers" contained in the 
workbook. 

Since the 𝜀 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎), we simulated the error terms with the following 
equation: 

𝜀 = 𝑍 ⋅ 𝜎, 

where 𝑍 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1). 

We obtain a uniform random number less than 1 and greater or equal to 0 with the 
Rnd Excel's visual basic function. Then, we simulate 𝑍 taking the inverse normal 
distribution of this random number through the NORMSINV Excel's function. Finally, we 
multiply this value by the standard error of the regression (i.e., 𝜎). 

So, the simulated values were obtained using the following equation: 

𝑌|𝑋1, 𝑋2 = 𝐸[𝑌|𝑋1, 𝑋2] + 𝜀, 

where 𝐸[𝑌|𝑋1, 𝑋2] = 𝛼 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2.  



Scenarios 

Stable Scenario 

First, I considered a low stochasticity scenario in order to check my work. 

Model parameters 

The model parameters were: 

Model Parameters           

 = 0.05 
 

Standard error of the regression 

 = 30 
 

Intercept of the regression 
  = -0.32 

 
Geometric decay of incremental paid losses by development period 

 = 0.06 
 

Inflation rate by calendar year 
 

 

Definitions               

Y | X1, X2 = Logarithm of paid losses 
  X1 = Development period 
  X2 = Calendar year 

   E[Y | X1, 

X2] 
= 

 + 1 · X1 + 2 · X2 
   = Z ·  

     U = Simulated uniform random number between [0, 1) 

Z = Simulated standar normal random number 

The simulated values were stored in the "Control_S" worksheet. 

Results 

Regressing the simulated values on 𝑋1 and 𝑋2, using the Excel regression add-in, we 
obtained the following results (see the "Control_M" worksheet): 

Regression Statistics 

Multiple R 0.998959 

R Square 0.997919 

Adjusted R Square 0.997883 

Standard Error 0.049616 

Observations 120 

  

  Coefficients Standard Error 

Intercept 29.97888607 0.012476867 

X1 -0.32137397 0.001438309 

X2 0.06278075 0.001438309 



 

The regression estimates were close to the true parameters, while the standard errors 
of the estimated coefficients were very small. The proportion of the total variation of 
𝑌|𝑋1, 𝑋2 that is "captured" by the linear regression model (i.e., 𝑅2) was "high" 
(99.79%). 

The mean residual plots by calendar year and development period are shown below. 
We can see that, even though there is some volatility, the average residuals are 
centered around zero and very small in magnitude. Thus, we can conclude that the 
regression analysis is working "reasonably well". 
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Scenario 1: Change in the inflation rate 

Because I wanted to test the scenary with a discrete change on inflation, I considered 
an inflation rate of 3% during the calendar years 1 through 10 and 16% in the last 5 
years. 

Model parameters 

The model parameters were: 

Model Parameters     

 = 0.05 
 

Standard error of the regression 

 = 30 
 

Intercept of the regression 


= 

-0.32 
 

Geometric decay of incremental paid losses by development 
period 

 = 0.03 
 

Inflation rate by calendar year 

 = 0.16 
 

Inflation rate by calendar year 

 

Definitions                

Y | X1, X2 =  Logarithm of paid losses 
  X1 =  Development period 
  X2 =  Calendar year 

   
E[Y | X1, 

X2] 
= 

  + 1 · X1 + 21 · X2 
 

If X2 < 10 

  + 1 · X1 + 21 · 9 + 22 · (X2 - 9) If X2 ≥ 10 

 = Z ·   

     U =  Simulated uniform random number between [0, 1) 

Z =  Simulated standar normal random number 

 

The simulated values were stored in the "Scenario1_S" worksheet. 

Results 

Regressing the simulated values on 𝑋1 and 𝑋2, using the Excel regression add-in, we 
obtained the following results (see the "Scenario1_M" worksheet): 

 

Regression Statistics 

Multiple R 0.992272824 

R Square 0.984605357 

Adjusted R Square 0.984342201 

Standard Error 0.13161344 

Observations 120 



  Coefficients Standard Error 

Intercept 29.67905496 0.033096343 

X1 -0.319616248 0.003815283 

X2 0.088543359 0.003815283 

  

We can see from the above results that the standard errors of the estimated 
coefficients were greater than before. The 𝑅2 is lower by 1.3% percentage points at 
98.4%, and the overall standard error is much higher at 0.131613 (i.e., 1.7 times 
higher). 

The mean residual plot by calendar year is shown below, which is the corresponding 
variable for inflation. The average residuals form has a V shape, which tells us that we 
are underestimating Y in calendar years 1 to 6 and 13 to 15, and overestimating Y in 
the remaining years. Therefore, we need to introduce a dummy variable to correct the 
inflation change in calendar year 11. 

 

Proposed model 

If we want to take into account the change in the inflation rate, we need to introduce a 
dummy variable to correct for the intercept and the slope, which are both different 
during the last 5 years. 

The proposed model was: 

𝑌|𝑋1, 𝑋2, 𝐷2 = 𝛼 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + 𝛾2 ⋅ 𝐷2 + 𝛿22 ⋅ (𝐷2 ⋅ 𝑋2) + 𝜀, 

where 𝐷2 is equal to 1 if 𝑋2 > 9 (i.e., if the calendar year is greater than 10), 0 
otherwise. 

The added dummy variables (𝐷2 and 𝐷2 ⋅ 𝑋2) were stored in the "Scenario1_SD" 
worksheet. 
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Results 

Regressing the simulated values on 𝑋1, 𝑋2, 𝐷2 and 𝐷2 ⋅ 𝑋2, using the Excel regression 
add-in, we obtained the following results (see the "Scenario1_MD" worksheet): 

Regression Statistics 

Multiple R 0.999125 

R Square 0.998252 

Adjusted R Square 0.998191 

Standard Error 0.044739 

Observations 120 

  Coefficients Standard Error 

Intercept 29.98886211 0.015960867 

X1 -0.319616248 0.001296926 

X2 0.032391131 0.002546755 

D2 -1.172032674 0.050864077 

D2 · X2 0.128981977 0.004652611 

We can see that the estimated coefficients were much better. The intercept was 
29.98886 in the first 10 calendar years and (29.98886 - 1.17203) for the remaining 5 
years. While the slope coefficient of the inflation rate is 0.032391 in the first 10 
calendar years (𝐷2 equal to 0) and (0.032391 + 0.128982) in calendar years 11 to 15. 
The 𝑅2 improved at 99.82%, and the overall standard error is much lower at 
0.044739. 

The average residuals are plotted in the chart below. The V shape has been removed. 
The mean residuals are centered around zero and are of low magnitude. Now, the 
overall shape of the mean residuals is roughly horizontal. Hence, the inclusion of the 
dummy variable improved the model.
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Scenario 2: Change in the payment pattern 

For this scenario, I considered an decay factor of 32% in calendar years 1 to 10 and 
15% over the last 5 years. 

Model parameters 

The model parameters were: 

Model Parameters           

 = 0.05 
 

Standard error of the regression 

 = 30 
 

Intercept of the regression 
  = -0.32 

 
Geometric decay of incremental paid losses by development period 

 = -0.15 
 

Geometric decay of incremental paid losses by development period 

 = 0.03 
 

Inflation rate by calendar year 
 

 

Definitions               

Y | X1, X2 = Logarithm of paid losses 
  X1 = Development period 
  X2 = Calendar year 

   
E[Y | X1, 

X2] 
= 

 + 11 · X1 + 2 · X2 
 

If X1 < 10 

 + 11 · 9 + 12 · (X1 - 9) + 2 · X2 If X1 ≥ 10 

 = Z ·  
     U = Simulated uniform random number between [0, 1) 

Z = Simulated standar normal random number 

 

The simulated values were stored in the "Scenario2_S" worksheet. 

Results 

Regressing the simulated values on 𝑋1 and 𝑋2, using the Excel regression add-in, we 
obtained the following results (see the "Scenario2_M" worksheet): 

 

Regression Statistics 

Multiple R 0.990959164 

R Square 0.982000065 

Adjusted R Square 0.981692374 

Standard Error 0.137679863 

Observations 120 

 



  Coefficients Standard Error 

Intercept 29.92238537 0.034621844 

X1 -0.289523123 0.00399114 

X2 0.029048117 0.00399114 

 

From the results showed above, we can observe that the standard errors of the 
estimated coefficients were greater than the control scenario. The 𝑅2 is lower by 1.6% 
percentage points at 98.2%, and the overall standard error is much higher at 
0.137679. 

The mean residual plot by development year is shown below, which is the 
corresponding variable for payment pattern. The average residuals form V shape, 
which tells us that we are underestimating Y in development years 1 to 3 and 12 to 15, 
and overestimating Y in the remaining years. As a result, we need to introduce a 
dummy variable to correct the change payment pattern in development year 11. 

 

Proposed model 

If we want to take into account the change in the inflation rate, we need to introduce a 
dummy variable to correct for the intercept and the slope, which are both different in 
the last 5 years. 

The proposed model was: 

𝑌|𝑋1, 𝑋2, 𝐷1 = 𝛼 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + 𝛾1 ⋅ 𝐷1 + 𝛿11 ⋅ (𝐷1 ⋅ 𝑋1) + 𝜀, 

where 𝐷1 is equal to 1 if 𝑋1 > 9 (i.e., if the development year is greater than 10), 0 
otherwise. 

The added dummy variables (𝐷1 and 𝐷1 ⋅ 𝑋1) were stored in the "Scenario2_SD" 
worksheet. 
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Results 

Regressing the simulated values on 𝑋1, 𝑋2, 𝐷1 and 𝐷1 ⋅ 𝑋1, using the Excel regression 
add-in, we obtained the following results (see the "Scenario2_MD" worksheet): 

Regression Statistics 

Multiple R 0.998758763 

R Square 0.997519067 

Adjusted R Square 0.997432773 

Standard Error 0.051556867 

Observations 120 

  Coefficients Standard Error 

Intercept 30.00926418 0.013435925 

X1 -0.319783423 0.001968538 

X2 0.029048117 0.001494559 

D1 -1.772531146 0.121985842 

D1 · X1 0.194754574 0.010827545 

 

According to the calculated results, we can see that the estimated coefficients were 
much better. The intercept was 30.009264 in the first 10 development years and 
(30.009264 - 1.77253) for the remaining 5 years, while the slope coefficient of the 
decay factor was -0.319783 during the first 10 development years (𝐷1 equal to 0) and 
(-0.319783 + 0.194754) in development years 11 to 15. The 𝑅2 improved at 99.75%, 
and the overall standard error was much lower at 0.051556. 

The average residuals are plotted in the chart below. The V shape has been removed. 
The mean residuals are centered around zero and are of low magnitude. Now, the 
overall shape of the mean residuals is roughly horizontal. Consequently, the inclusion 
of the dummy variable improved the model. 
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Scenario 3: Change in the inflation rate and in the payment 
pattern 

The model parameters were: 

Model Parameters           

 = 0.01 
 

Standard error of the regression 
  = 10 

 
Intercept of the regression 

  = -0.20 
 

Geometric decay of incremental paid losses by development period 

 = -0.07 
 

Geometric decay of incremental paid losses by development period 

 = 0.35 
 

Inflation rate by calendar year 
  = 0.05 

 
Inflation rate by calendar year 

 
 

Definitions               

Y | X1, X2 = Logarithm of paid losses 
  X1 = Development period 
  X2 = Calendar year 

   E[Y | X1, 

X2] 
= 

 + 11 · X1 + 21 · X2 
 

If X1 < 10 and X2 < 10 

  

 + 11 · 9 + 12 · (X1 - 9) + 21 · X2 If X1 ≥ 10 and X2 < 10 

  

 + 11 · X1 + 21 · 9 + 22 · (X2 - 9) If X1 < 10 and X2 ≥ 10 

  

 + 11 · 9 + 12 · (X1 - 9) + 21 · 9 + 22 · (X2 - 9) If X1 ≥ 10 and X2 ≥ 10 


= 

Z · 

 
     U = Simulated uniform random number between [0, 1) 

Z = Simulated standar normal random number 
 

 

The simulated values were stored in the "Scenario3_S" worksheet. 

Results 

Regressing the simulated values on 𝑋1 and 𝑋2, using the Excel regression add-in, we 
obtained the following results (see the "Scenario3_M" worksheet): 

 

Regression Statistics 

Multiple R 0.935848463 

R Square 0.875812346 

Adjusted R Square 0.87368948 

Standard Error 0.277777178 

Observations 120 



 

  Coefficients Standard Error 

Intercept 10.6744995 0.069851596 

X1 -0.17890533 0.008052358 

X2 0.216419856 0.008052358 

 

Considering the obtained results, we can see that the standard errors of the estimated 
coefficients were the greatest of previous scenarios. Comparing with the control 
scenario, the 𝑅2 was lower by 12.21% percentage points at 87.58%, and the overall 
standard error was much higher at 0.277777 (almost 5 times greater than the 
obtained in the control scenario). 

The mean residual plots by calendar year and development year are shown below, 
which show the change at year 10. So, we need to introduce a dummy variable to 
correct this.

 

-0.66487

0.44060

-1.00000

-0.50000

0.00000

0.50000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
e

a
n

 R
e

si
d

u
a

l

Calendar Year: 0 to  14

Residual Plot:
Mean Residual by Calendar Year

-0.07700

0.04470

-0.10000

-0.05000

0.00000

0.05000

0.10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
e

a
n

 R
e

si
d

u
a

l

Development Period: 0 to  14

Residual Plot:
Mean Residual by Development Period



Proposed model 

If we want to take into account both changes, we need to introduce two dummy 
variables. 

The proposed model was: 

𝑌|𝑋1, 𝑋2, 𝐷1, 𝐷2 = 𝛼 + 𝛽1 ⋅ 𝑋1 + 𝛽2 ⋅ 𝑋2 + 𝛾1 ⋅ 𝐷1 + 𝛾2 ⋅ 𝐷2 + 

                                                             𝛿11 ⋅ (𝐷1 ⋅ 𝑋1) + 𝛿12 ⋅ (𝐷1 ⋅ 𝑋2) + 

                                                             𝛿21 ⋅ (𝐷2 ⋅ 𝑋1) + 𝛿22 ⋅ (𝐷2 ⋅ 𝑋2) + 𝜀, 

where 𝐷1 (development) and 𝐷2 (calendar) are the dummy variables described above. 

The added dummy variables were stored in the "Scenario3_SD" worksheet. 

Results 

Regressing the simulated values, using the Excel regression add-in, we obtained the 
following results (see the "Scenario3_MD" worksheet): 

 

Regression Statistics 

Multiple R 0.999915453 

R Square 0.999830913 

Adjusted R Square 0.999818727 

Standard Error 0.010523098 

Observations 120 

 

  Coefficients Standard Error 

Intercept 9.999018104 0.003754147 

X1 -0.199632885 0.000668892 

X2 0.350090949 0.000668892 

D1 -1.163906445 0.033077563 

D1 · X1 0.129863306 0.002568306 

D2 2.699428515 0.013461192 

D2 · X2 -0.300001148 0.001246905 

D1 · X2 -0.000796774 0.002726739 

D2 · X1 6.29093E-05 0.000846089 

 

We can see that the estimated coefficients were much better. The 𝑅2 improved at 
99.98%, and the overall standard error was much lower at 0.010523. 



The average residuals are plotted in the chart below. The mean residuals are centered 
around zero and are of low magnitude. Now, the overall shape of the mean residuals is 
roughly horizontal. Hence, the inclusion of the dummy variables improved the model. 
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Conclusions 

In sum, in order to model a more realistic situation, where both inflation and payment 
pattern changes are occurring at the same time, the inclusion of dummy varibles allow 
us to capture best the variability of the logarithm of paid losses under the proposed 
model using regression analysis. 


