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Introduction 

Global warming, the increase of Earth's average surface temperature due to effect of 
greenhouse gases, is an issue of great importance around the world. Many countries 
are concerned about this problem, and allocate several resources in order to 
understand this phenomenon. In particular, some of them measure the temperature 
through weather stations along their territory. With the aim to comprehend this event 
and employing the collected data, a possible approach to model the variability of 
temperature is by the use of time series models. 

The purpose of this project is to model the daily high temperatures reported by a 
weather station in Corpus Christi, TX, through the use of time series analysis and the 
data provided by the NEAS. 

In order to construct our model, the approach that we will use is the model building 
strategy proposed by Box and Jenkins (1976): 

1. specification 

2. fitting, and 

3. diagnostics 



For the first step, we will look at the time plot of the series, compute some statistics 
from the data, and consider some classes of time series models while trying to attempt 
to adhere to the principle of parsimony (i.e., the model with the fewest number of 
parameters that will adequately represent the variation of the data). Secondly, in 
fitting a model, we will try to find the best possible estimates of the unknown 
parameters through the observed data. Finally, we will assess the quality of the model 
that we already have specified and estimated. 

Data 

Description 

The data was obtained from the NEAS's web site; I download the 14 zip files of daily 
temperature. There were a total of 1,062 files in CSV format, where each file 
corresponds to a weather station in the U.S. The reported variables were date of 
observation, high and low temperatures (in degrees Farenheit), and rainfall 
precipitation (in hundreds of an inch). 

Because each station has a different number of observations, the quality of the data 
varies among them; specifically, the number of missing values was different for each 
one. 

In order to take advantage of the amount of data, I decided to calculate the total 
number of missing values (i.e., considering the date and high and low temperatures) 
and the number of observations. The graph below show this for each weather station. 

 

According to this plot, we can see an increasing pattern of missing values as the 
number of observations increases. However, there are some stations with few missing 

http://tempforum.neas-seminars.com/Forum279.aspx


values and many observations. Because I am not interested in a particular station, I 
determined to take the one with many years of data and few missing records. So, I 
decided to explore these traits among all the files. 

The files with less than 20 total missing values were the following: 
 

                      file     n date ht lt tm min.y max.y n.y 
882 station412015_data.csv 21185    0  0  0  0  1948  2005  58 
59  station043257_data.csv 21003    0  1  0  1  1948  2005  58 
998 station457938_data.csv 45624    0  0  1  1  1881  2005 125 
909 station417945_data.csv 21672    0  1  1  2  1946  2005  60 
395 station215435_data.csv 42003    0  1  6  7  1891  2005 115 
474 station244055_data.csv 41272    0  1  7  8  1893  2005 113 
542 station266779_data.csv 25143    0  2  9 11  1937  2005  69 
888 station412797_data.csv 21185    0  6  6 12  1948  2005  58 
623 station307167_data.csv 29220    0  6  8 14  1926  2005  80 
627 station308383_data.csv 30681    0  5 10 15  1922  2005  84 
257 station131635_data.csv 21094    0  9  7 16  1948  2005  58 
536 station262573_data.csv 28490    0  7  9 16  1928  2005  78 

 

where date, ht, and lt corresponds to the total number of missing values for the 
record date, low and high temperature variables, respectively. On the other hand, tm 
represents the total number of missing values (i.e., the total number of missing values 
among the date, ht, and lt variables), min.y and max.y are the minimum and 
maximum years of observation, respectively, and n.y is the total number of years. 

From the above table, I decided to take the station number 412015, which 
corresponds to the coastal city of Corpus Christi in Texas. Since it does not have any 
missing value, I did not imputate any datum. 

Exploratory Data Analysis 

Because I wanted to have a better understanding of the high temperatures in Corpus 
Christi, I calculated some summary statistics during the 58 years of data (21,185 
observations): 

      date                  ht        
 Min.   :1948-01-01   Min.   : 26.0   
 1st Qu.:1962-07-02   1st Qu.: 75.0   
 Median :1976-12-31   Median : 84.0   
 Mean   :1976-12-31   Mean   : 81.3   
 3rd Qu.:1991-07-02   3rd Qu.: 91.0   
 Max.   :2005-12-31   Max.   :109.0   

 

As we can see from the above table, since the median is greater than the mean, the 
distribution of the high temperature is left skewed. On the other hand, the standard 
deviation during this period was 12.06. 



I decided to analyse the information by periods of 29 years (1948-1976[F29] and 
1977-2005[L29]). From the plot below, we can observe that both periods have the 
same median (84) with a lower variability for the first 29 years (the standard 
deviation was 11.948, while 12.17 for the second period). 

 

 

However, since there were some outliers, the standard deviation was not a good 
measure of variability, I calculated the interquantile range for the first and last 
periods, which both had the same value (16). So, it seems reasonable to assume that 
both periods have the same variability and the same mean. 

Analysis 

Model 

We will assume that high temperatures can be modeled by 

𝑌𝑡 = 𝜇𝑡 + 𝑋𝑡, 

where 𝜇𝑡 = 𝛽𝑖 is a deterministic seasonal trend with 𝑖 as the date index defined as 
𝑀𝑜𝑛𝑡ℎ ⋅ 100 + 𝐷𝑎𝑦. Hence, the 𝛽𝑖's give the expected average high temperatures for 
each day (expressed as an index) of the year. On the other hand, 𝑋𝑡 correspond to the 
stochastic trend of the time series which we will fit through the use of an ARIMA 
model. 

In order to fit the seasonal trend, de-seasonalize the data, and test the robustness of 
the model, I calculated the average high temperature for each date index using the 
data for the first period. 



 

We can see, from the above plot, that the volatiliy of daily temperatures overwhelms 
the seasonal pattern; the 62.179% of the first differences were positive, while the 
37.821% were negative. In order to remove this from the deterministic trend, I used 
centered moving averages to smooth the sequence of averages. I tried 7, 15, 25, and 
31 day centered moving averages, and I found that the 25 centered moving averages 
work fine. 

 



With the 25 day centered moving average, I calculated the seasonally adjusted daily 
temperatures under the additive model (i.e., the reported temperature minus the 
smoothed average). Since the mean of the seasonally adjusted temperatures were 
practically zero (3.04510^{-16}), I did not have to normalize them; their range were (-
42.419, 24.457). 

Before I fitted the ARIMA model, I checked for two patterns: 

• White noise: I plotted the first 183 days of 1952 (leap-year), and I could notice 
that it was not white noise since positive and negative seasonally adjusted 
temperatures came in streams. 

• Random walk: Using the same plot, I also noticed that the mean reversion was 
strong. So, it was not a random walk. 

 

I calculated the sample autocorrelations and ploted the correlogram. The graph below 
suggests that the sample autocorrelation functions decays exponentially; in particular, 
𝑟1 has a value of 0.603 and 𝑟2 (0.303) is almost 𝑟1

2 (0.364). Even though some sample 
autocorrelations are not zero, it seems reasonable to assume stationarity. 

 



In addition, I decided to plot the 365 centered moving average of the seasonally 
adjusted temperature of the 29 years of data to check for any long trend. As it can see, 
from the graph below, it is difficult to know if there is a long trend or is just variability 
around the mean (blue line). Hence, I decided to take the time series as they are (i.e., 
without differentiating or detrending any long pattern). 

 

Specification 

As shown in the correlogram, I determined that a reasonable parameter 𝑑 for the 
ARIMA process would be 0. 

In addition, the exponential decay of the sample autocorrelation function suggests an 
autoregressive model. I considered an AR(1) and AR(2) models since the partial 
autocorrelation function suggests them. 

 



I also considered an ARIMA(1,0,3) from the sample extended autocorrelation 
function: 
 

AR/MA 
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 
0 x x x x x x x x x x x  x  x  x  
1 x x x o o o o o x o o  o  o  o  
2 x x x x o o o o x o o  o  o  o  
3 x x x x o o o o o o o  o  o  o  
4 x x o x x o o x o o o  o  o  o  
5 x x x x x o x x o o o  o  o  o  
6 x x o x x x o x o o o  o  o  o  
7 x x o x x x x x o x o  o  o  o  

 

Fitting 

I fitted the proposed models using least squares estimation for the AR(1) and AR(2), 
while I used the method of maximum likelihood for the ARIMA(1,0,3) model. 

 

Model 𝜙1 𝜙2 𝜃1 𝜃2 𝜃3 

AR(1) 0.603     

AR(2) 0.661 -0.096    

ARIMA(1,0,3) 0.911  -0.255 -0.318 -0.135 

 
  



Diagnostics 

Plots of the Residuals 

For each model, I plotted the first 183 residuals, and I found a rectangular scatter 
around a zero horizontal level. However, there was an increased variation in the 
beginning of the period, whereas a reduced variation at the end - not an ideal plot of 
residuals. 

 

  



Normality of the Residuals 

Using all the residuals from each model, the quantile-quantile plots do not seem to 
follow a normal distribution at the tails. The empirical distributions of the residuals 
are left skewed. 

 

I also tested the normality of the residuals, using the first 5,000 values, through the 
Shapiro-Wilk test. Since all of them resulted statistically significant (a lower p-value), 
we rejected the null hypothesis that the residuals of each model were normally 
distributed. 

 
    Shapiro-Wilk normality test 
 
data:  m.AR_1$resid[1:5000] 
W = 0.9, p-value <2e-16 



 
    Shapiro-Wilk normality test 
 
data:  m.AR_2$resid[1:5000] 
W = 0.9, p-value <2e-16 

 
    Shapiro-Wilk normality test 
 
data:  m.ARIMA_1_0_3$residuals[1:5000] 
W = 0.9, p-value <2e-16 

Autocorrelation of the residuals 

Looking the sample autocorrelation function of the residuals for each model, the 
ARIMA(1,0,3) showed less evidence of autocorrelation among them. 

 



The following table has the Box-Pierce, with their p-values, and the Durbin-Watson 
statistics for the three models: 

Model Box-Pierce (K = 500) Box-Pierce (K = 1,000) Durbin-Watson 

AR(1) 831.796(0) 1292.427(8.29610^{-10}) 1.883 

AR(2) 804.032(1.1110^{-16}) 1281.268(2.63710^{-9}) 1.985 

ARIMA(1,0,3) 537.823(0.095) 985.266(0.59) 1.989 

As we can see, the results for the ARIMA(1,0,3) model showed that we do not have 
evidence to reject the null hypothesis that the error terms are uncorrelated. In 
contrast, the statistics for the AR(1) and AR(2) were statistically significant. Hence, 
there are evidence of correlation among the residuals of these models. 

Robustness 

To test the robustness of the model, I calculated the sample extended autocorrelation 
function for the last period (1977-2005) using the same procedure described above. 
 

AR/MA 
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 
0 x x x x x x x x x x x  x  x  x  
1 x x x o o o o o o o o  x  o  o  
2 x x x x o o o o o o o  o  o  o  
3 x o x x o o o o o o o  o  o  o  
4 x x o x x o o o o o o  o  o  o  
5 x x x x x o o o o x o  x  o  o  
6 x x x x x o o x o x o  o  o  o  
7 x x x x x o o x o x o  o  o  o  

The results suggest the same model obtained with the first 29 years: an 
ARIMA(1,0,3). 

  



Conclusion 

Even though the AR(1) and AR(2) models are simpler (under the principle of 
parsimony) than the ARIMA(1,0,3) model, I concluded that the best fit for the 
seasonally adjusted temperatures, based on the previous analysis, was the latter. 
However, as we saw in the diagnostic section, this model does not explain all the 
variability of the phenomenon. 

The following chart compares the observed daily high temperatures, during the leap-
year 1952, with the predicted values under the ARIMA(1,0,3) model. 

 

The model seems to explain well the variability at the middle of the year. However, at 
the beginning and at the end of the year, the model had a poor fit. It did not capture 
the high variation of daily temperatures at the borders. 


