Time Series – Student Project Validation by Experience or Education (VEE) February 2016

Review of Historical Price of Gold

Introduction

Of all the precious metals, gold is the most popular as an investment. Investors generally buy gold as a way of diversifying risk. The gold market is subject to speculation and volatility as are other markets. Gold is shown to have the most effective safe haven and hedging properties across a number of countries out of all precious metals available for investment. Gold is the 79th element and represented by Au. Additionally, to quote Goldmember, "I love gooooooooold".

Data was obtained for the closing price at year-end of gold from 1792 to 2014 from <u>http://onlygold.com/Info/Historical-Gold-Prices.asp</u>. While all data and information on the internet should be trusted (you can't possibly post inaccurate information on something as sacred as the internet), the information has not been reviewed further or validated.

<u>Analysis</u>

While data was available for over 200 years, we will review the price of gold for the past 50 years of data (1964-2004). The prices below have not been adjusted for CPI or any other external factors. Based on the increasing trend, we can conclude that this is not a stationary process.

We are also able to review whether the series is stationary with the autocorrelation, shown below:

The results of the analysis also support the times series being non-stationary. Next we will review the first, second and third differences of the series.

The graph of the first differences of the price of gold suggests that this may be a stationary process, counter to our original hypothesis. We will also review the second and third differences.

The graphs of the differences also suggest that the time series may be stationary. We can also review the autocorrelation of the second and third differences.

Finally, we will determine which regression model is the best fit for the series.

The following outlines the results of a regression analysis for the various models.

<u>AR(1)</u>

Regression St	tatistics
Multiple R	0.958369
R Square	0.918471
Adjusted R	
Square	0.916772
Standard Error	113.686
Observations	50

					Significance
	df	SS	MS	F	F
Regression	1	6988860	6988860	540.7446	8.88E-28
Residual	48	620376.6	12924.51		
Total	49	7609237			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	28.63991	23.93679	1.196481	0.237386
X Variable 1	0.987164	0.042452	23.25392	8.88E-28

<u>AR(2)</u>

Regression St	tatistics
Multiple R	0.959092
R Square	0.919858
Adjusted R	
Square	0.916374
Standard Error	113.8621
Observations	49

					Significance
	df	SS	MS	F	F
Regression	2	6845068	3422534	263.9911	6.15E-26
Residual	46	596370.8	12964.58		
Total	48	7441438			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	31.79134	24.51413	1.296858	0.201148
X Variable 1	1.170259	0.144605	8.092771	2.16E-10
X Variable 2	-0.20039	0.149844	-1.33733	0.187689

<u>AR(3)</u>

Regression S	tatistics
Multiple R	0.958727
R Square	0.919157
Adjusted R	
Square	0.913645
Standard Error	115.547
Observations	48

					Significance
	df	SS	MS	F	F
Regression	3	6679115	2226372	166.7556	4.8E-24
Residual	44	587448.5	13351.1		
Total	47	7266564			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	38.974	26.49366	1.471069	0.148389
X Variable 1	1.137222	0.152459	7.459213	2.44E-09
X Variable 2	-0.01022	0.290297	-0.0352	0.972079
X Variable 3	-0.18662	0.242167	-0.77062	0.445053

<u>AR(4)</u>

Regression S	tatistics
Multiple R	0.957857
R Square	0.917489
Adjusted R	
Square	0.909631
Standard Error	117.9724
Observations	47

					Significance
	df	SS	MS	F	F
Regression	4	6499800	1624950	116.756	3.58E-22
Residual	42	584534.5	13917.49		
Total	46	7084334			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	38.06402	29.01411	1.311914	0.196675
X Variable 1	1.140903	0.157017	7.266102	6.07E-09
X Variable 2	-0.00164	0.296985	-0.00551	0.995629
X Variable 3	-0.27067	0.347018	-0.77999	0.439769
X Variable 4	0.081655	0.249116	0.32778	0.744707

<u>AR(5)</u>

Regression Statistics				
Multiple R	0.956976			
R Square	0.915803			
Adjusted R				
Square	0.905279			
Standard Error	120.5256			
Observations	46			

					Significance
	df	SS	MS	F	F
Regression	5	6320112	1264022	87.01545	2.08E-20
Residual	40	581056.6	14526.41		
Total	45	6901169			

		Standard		
	Coefficients	Error	t Stat	P-value
Intercept	34.95293	32.47528	1.076294	0.288245
X Variable 1	1.13874	0.160712	7.085609	1.43E-08
X Variable 2	-0.00753	0.304378	-0.02475	0.980376
X Variable 3	-0.24301	0.360316	-0.67444	0.503912
X Variable 4	-0.03126	0.361405	-0.08649	0.931508
X Variable 5	0.112359	0.26391	0.425748	0.672574

Conclusion

	P-values				
	AR(1)	AR(2)	AR(3)	AR(4)	AR(5)
Intercept	0.2374	0.2011	0.1484	0.1967	0.2882
ф1	0.0000	0.0000	0.0000	0.0000	0.0000
ф2		0.1877	0.9721	0.9956	0.9804
ф3			0.4451	0.4398	0.5039
ф4				0.7447	0.9315
ф5					0.6726
R Square	0.9185	0.9199	0.9192	0.9175	0.9158
Adjusted R Square	0.9168	0.9164	0.9136	0.9096	0.9053

The following summarizes the results of the models:

Based on the above, the AR(2) model appears to be the most appropriate model.

With that, the resulting equation is as follows:

 $Y_t = 0.2011 + 0.000^* Y_{t-1} + 0.1877^* Y_{t-2}$