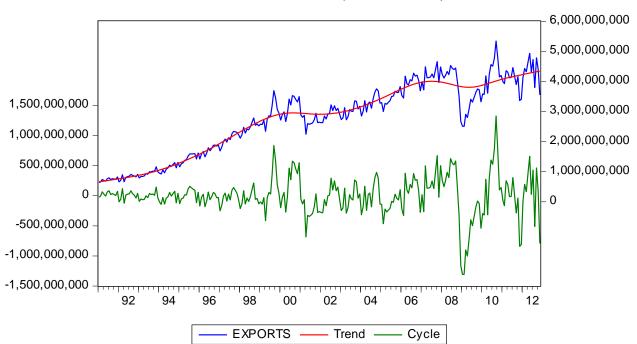
ARIMA Time Series Model for Philippine Exports

VEE Time Series Student Project Willy M. Tan

INTRODUCTION


The objective of this project is to use ARIMA time series to model Philippine Exports with the help of EViews software. The process of model specification, fitting, and diagnostics will be demonstrated in this project. The selected model will then be used to generate forecasts with confidence bounds.

DATA SOURCE

The exports dataset is the monthly values of Philippine exports as reported by the National Statistics Office (NSO).

DATA VISUALIZATION

Using the log level of exports, I have extracted the long-term trend of the series and produced a line graph superimposing the actual series and its long-term trend. The Hodrick-Prescott (HP) Filter determines the long-term trend of the series.

Hodrick-Prescott Filter (lambda=14400)

The red line in the graph is the HP Filtered long-term trend. As we can see from the graph, the trend is generally upward sloping which signals growth in exports. The green line are outliers in the cycle which show irregular events or shocks.

TEST FOR UNIT ROOT

Since the graph does not tell us exactly if the series has a stochastic trend, a unit root test is necessary to be performed. This is done using the Augmented Dickey-Fuller (ADF) procedure in EViews.

EViews selects the number of lagged values of using automatic selection given an information criterion. The inclusion of the intercept and time trend in the test equation is determined through the significance of the said terms.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(EXPORTS)) Method: Least Squares Date: 03/24/16 Time: 17:33 Sample (adjusted): 1991M03 2012M11 Included observations: 261 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(EXPORTS(-1)) D(LOG(EXPORTS(-1))) C @TREND(1991M01)	-0.046649 -0.313979 0.989406 0.000209	0.021760-2.1437810.059856-5.2455430.4510832.1934000.0001611.298653		0.0330 0.0000 0.0292 <mark>0.1952</mark>
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.130092 0.119937 0.082327 1.741865 283.4051 12.81114 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.006430 0.087757 -2.141036 -2.086407 -2.119077 2.025748

Since time trend is not a significant variable in the model, we will have to drop it from our model and re-run the test without it.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(EXPORTS)) Method: Least Squares Date: 03/24/16 Time: 17:36 Sample (adjusted): 1991M03 2012M11 Included observations: 261 after adjustments

Coefficient	Std. Error t-Statistic		Prob.
-0.021018	0.009175 -2.290729		0.0228
			0.0000
0.463116	0.198358	2.334747	0.0203
0.124383	Mean dependent var		0.006430
0.117595	S.D. dependen	t var	0.087757
0.082436	Akaike info crite	erion	-2.142158
1.753296	Schwarz criteri	on	-2.101186
282.5516	Hannan-Quinn criter.		-2.125688
18.32470	Durbin-Watson stat		2.038186
0.000000			
	-0.327724 0.463116 0.124383 0.117595 0.082436 1.753296 282.5516 18.32470	-0.327724 0.058992 0.463116 0.198358 0.124383 Mean depende 0.117595 S.D. dependen 0.082436 Akaike info criteri 1.753296 Schwarz criteri 282.5516 Hannan-Quinn 18.32470 Durbin-Watson	-0.327724 0.058992 -5.555431 0.463116 0.198358 2.334747 0.124383 Mean dependent var 0.117595 S.D. dependent var 0.082436 Akaike info criterion 1.753296 Schwarz criterion 282.5516 Hannan-Quinn criter. 18.32470 Durbin-Watson stat

All variables are now significant in the test equation. We can now proceed to the interpretation of the result of the ADF test. The null hypothesis is that the series has a unit root.

Null Hypothesis: LOG(EXPORTS) has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level	-2.290729 -3.455289 -2.872413	<mark>0.1758</mark>
	10% level	-2.572638	

*MacKinnon (1996) one-sided p-values.

Since the p-value of the ADF test is greater than 0.10, we do not reject the null hypothesis that *log(exports)* has a unit root. This means that we need to check for the existence of higher order unit root by applying the unit root test on the differenced series.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(EXPORTS),2) Method: Least Squares Date: 03/24/16 Time: 17:43 Sample (adjusted): 1991M03 2012M11 Included observations: 261 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOG(EXPORTS(-1))) C	-1.330504 0.008883	0.059461 -22.37617 0.005163 1.720404		0.0000 0.0866
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.659073 0.657757 0.083109 1.788956 279.9240 500.6932 0.000000	Mean depende S.D. dependen Akaike info crite Schwarz criterie Hannan-Quinn Durbin-Watson	t var erion on criter.	-0.000990 0.142063 -2.129686 -2.102371 -2.118706 2.033226

Null Hypothesis: D(LOG(EXPORTS)) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-22.37617	0.0000
Test critical values:	1% level	-3.455289	
	5% level	-2.872413	
	10% level	-2.572638	

*MacKinnon (1996) one-sided p-values.

After excluding insignificant variables in the test equation, the result of the ADF test is that the differenced series of *log(exports)* does not have unit root. This means that *log(exports)~I(1)*, that is, the *log(exports)* needs a single differencing to make it stationary.

Next, we will conduct a seasonality test by regressing the detrended series with seasonal indicators. The F-statistic of the model captures the information on the amount of variability as explained by the seasonal indicators and its corresponding p-value determines the decision on the hypothesis test. The null hypothesis for this test is that all coefficients of the seasonal indicators are all equal to zero, that is, there is no seasonality in the series.

Dependent Variable: LEXPORTS_D Method: Least Squares Date: 03/24/16 Time: 17:55 Sample: 1991M01 2012M11 Included observations: 263

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	-0.021885	0.027387	-0.799106	0.4250
@SEAS(1)	-0.058848	0.038288	-1.536976	0.1256
@SEAS(2)	-0.047138	0.038288	-1.231118	0.2194
@SEAS(3)	0.038298	0.038288	1.000259	0.3181
@SEAS(4)	-0.038939	0.038288	-1.016987	0.3101
@SEAS(5)	0.013765	0.038288	0.359513	0.7195
@SEAS(6)	0.046241	0.038288	1.207702	0.2283
@SEAS(7)	0.055285	0.038288	1.443903	0.1500
@SEAS(8)	0.060479	0.038288	1.579558	0.1155
@SEAS(9)	0.100160	0.038288	2.615925	0.0094
@SEAS(10)	0.081609	0.038288	2.131413	0.0340
@SEAS(11)	0.010715	0.038288	0.279858	0.7798
R-squared	0.138089	Mean depende	nt var	5.72E-15
Adjusted R-squared	0.100316	S.D. dependen	t var	0.132315
S.E. of regression	0.125503	Akaike info crite	erion	-1.268416
Sum squared resid	3.953520	Schwarz criterion		-1.105428
Log likelihood	178.7967	Hannan-Quinn	-1.202915	
F-statistic	3.655747	Durbin-Watson stat		0.347980
Prob(F-statistic)	0.000080			

Since the F-test p-value is less than 0.10, we conclude that *log(exports)* has seasonality.

As a result of these tests, the input series will be *dlog(exports, 1, 12)*.

ARIMA MODELING

The preliminary tests show that log(exports) is I(1) and has seasonality. The detrended and deseasonalized series will be dlog(exports, 1, 12).

Date: 03/24/16 Time: 16:34 Sample: 1992M02 2012M11 Included observations: 250

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.415	-0.415	43.492	0.000
, ⊨	וםי	2	0.120	-0.063	47.122	0.000
1	ן ו	3	0.023	0.060	47.255	0.000
ון ו		4	0.056	0.115	48.048	0.000
	וםי	5	-0.116	-0.068	51.479	0.000
ı 🏻 I	וםי	6	0.036	-0.067	51.811	0.000
י מ	ן ון ו	7	0.043	0.040	52.290	0.000
I I I	1 1	8	-0.059	-0.008	53.191	0.000
i þi	ן ון ו	9	0.053	0.040	53.928	0.000
 	[]	10	-0.132	-0.140	58.517	0.000
		11	0.252	0.178	75.241	0.000
· ·		12	-0.492	-0.396	139.42	0.000
· 🗖 ·	· •	13	0.155	-0.248	145.77	0.000
I I I	וןי	14	-0.028	-0.043	145.98	0.000
I 🛛 I	I]I	15	-0.027	0.012	146.17	0.000
יםי	1 1	16	-0.062	0.004	147.19	0.000
ים	111	17	0.102	-0.009	149.99	0.000
I I I	וןי	18	-0.047	-0.036	150.59	0.000
I I I	יםי	1	-0.057		151.48	0.000
i 🏻 i	יםי	20		-0.093	151.73	0.000
I (I I	1		-0.033		152.02	0.000
ı þi	יםי	22		-0.068	152.27	0.000
יםי	ויים		-0.058	0.062	153.22	0.000
יםי	🗖 '	24		-0.200	154.64	0.000
ון ו	יםי	25		-0.082	154.88	0.000
I 🛛 I	יםי	26	0.032	0.069	155.16	0.000
I I I	I]I		-0.029	0.009	155.40	0.000
יםי	1	28		-0.022	156.09	0.000
111	יםי	29	0.022	0.070	156.23	0.000
I I I	וןי	1		-0.033	156.84	0.000
יםי	וןי	31	0.061	-0.041	157.91	0.000
1 1	וםי		-0.007		157.93	0.000
111	ויים	33	0.019	0.032	158.04	0.000
чЦт	ן יםי	34	-0.036	-0.065	158.42	0.000

At lag 1, the AC and PAC are both found to be significant. We can choose to add either AR or MA term since they are equal at the first lag. In this case, I have added AR(1) in the model to be re-estimated.

Dependent Variable: DLOG(EXPORTS,1,12) Method: Least Squares Date: 03/24/16 Time: 16:58 Sample (adjusted): 1992M03 2012M11 Included observations: 249 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error t-Statistic		Prob.
C AR(1)	-4.39E-05 -0.414610	0.004153 -0.010570 0.057886 -7.162519		0.9916 <mark>0.0000</mark>
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.171979 0.168627 0.092695 2.122297 239.9210 51.30168 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-9.15E-05 0.101662 -1.911012 -1.882760 -1.899640 2.046836
Inverted AR Roots	41			

Since the AR(1) term is significant, it will be retained in the model. Next, we need to check the residual correlogram again to see if there are still significant correlations.

Autocorrelation Partial Correlation AC PAC Q-Stat Prob 101 101 1 -0.028 -0.028 0.2035 1 U 1 2 -0.024 -0.024 0.3452 0.557 1 3 0.118 0.117 3.9049 0.142 L E 4 0.032 0.038 4.1657 0.244 E T h i 5 -0.117 -0.112 7.6710 0.104 C 1 Π T Ŧ 6 0.012 -0.007 7.7092 0.173 7 0.050 0.040 8.3504 0.214 T 8 -0.035 -0.007 8.6601 1 T 0.278 T. T 9 -0.020 -0.014 8.7647 0.363 10 1 10 -0.034 -0.061 9.0689 0.431 11 0.043 0.044 9.5476 L T. h. 0.481 12 -0.494 -0.494 73.888 0.000 T 1 E 10 1 13 -0.038 -0.061 74.265 0.000 I. 1 14 0.021 -0.013 74.386 0.000 ιE Т 15 -0.083 0.018 76.236 0.000 16 -0.048 -0.008 76.860 1 Т 0.000 0.089 -0.020 E. T 17 78.976 0.000 101 18 -0.044 -0.058 79.504 0.000 101 19 -0.090 -0.085 81.725 0.000 П I 101 20 -0.003 -0.062 81.728 0.000

Date: 03/24/16 Time: 17:03 Sample: 1992M03 2012M11 Included observations: 249 Q-statistic probabilities adjusted for 1 ARMA term

(l)	111	21 -0.019 -0.016 81.831 0.000
i i	10	22 -0.000 -0.033 81.831 0.000
i di i	1 1	23 -0.032 -0.006 82.108 0.000
i pi	E 1	24 0.088 -0.230 84.240 0.000
i þi	ı () i	25 0.092 0.040 86.586 0.000
() () () () () () () () () () () () () (i þi	26 0.046 0.054 87.172 0.000
1 1	1	27 -0.001 -0.024 87.172 0.000
() 	11	28 0.065 0.015 88.369 0.000
())	i þi	29 0.033 0.050 88.673 0.000
ų i		30 -0.023 -0.071 88.828 0.000
ւիս	101	31 0.059 -0.042 89.836 0.000
ւիս	i 🛛 i	32 0.029 -0.035 90.072 0.000
i li i	111	33 0.010 0.018 90.099 0.000
	u t i	34 -0.015 -0.054 90.167 0.000
ւի	11	35 0.033 0.009 90.484 0.000
ıd i	 1	36 -0.074 -0.183 92.070 0.000

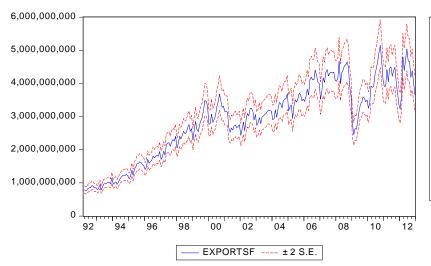
For the seasonal lags, the AC cuts off rapidly after lag 12, but the PAC decays slowly on the succeeding seasonal periods. This is a special form of the correlogram and can be modeled using MA(12). Instead of adding MA(12), we will add an SMA(12) in the model to indicate that this is a seasonal term. Then we proceed to check the significance of the recently added SMA(12) term and the resulting residual correlogram.

Dependent Variable: DLOG(EXPORTS,1,12) Method: Least Squares Date: 03/24/16 Time: 17:18 Sample (adjusted): 1992M03 2012M11 Included observations: 249 after adjustments Convergence achieved after 3 iterations MA Backcast: 1991M03 1992M02

Variable	Coefficient	Std. Error t-Statistic		Prob.
C AR(1) MA(12)	-0.000547 -0.365336 -0.848525	0.000726 0.059175 0.029429	-0.752797 -6.173823 -28.83304	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.530274 0.526455 0.069958 1.203953 310.4987 138.8549 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-9.15E-05 0.101662 -2.469869 -2.427490 -2.452811 2.072736
Inverted AR Roots Inverted MA Roots	37 .99 .49+.85i 49+.85i	.85+.49i 0099i 85+.49i	.8549i 00+.99i 8549i	.4985i 4985i 99

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ıd ı	10	1	-0.054	-0.054	0.7317	
i di i	101	2	-0.028	-0.031	0.9331	
i þi	i Di	3	0.097	0.094	3.3410	0.06
ulu –	111	4	-0.023	-0.014	3.4741	0.17
i di u	10 I	5	-0.097	-0.095	5.9054	0.11
ų lai	101	6	-0.008	-0.029	5.9237	0.20
i 🖬 i	101	7	-0.047	-0.051	6.4903	0.26
u d u	101	8	-0.068	-0.058	7.6889	0.26
ւիւ	1.01	9	0.037	0.029	8.0548	0.32
	10	10	-0.072	-0.074	9.3953	0.31
i þi	i Di	11	0.051	0.051	10.066	0.34
i di i		12	-0.086	-0.106	12.009	0.28
d)	111	13	-0.013	-0.021	12.055	0.36
i ji	11	14	0.010	-0.008	12.082	0.43
ug i	10	15	-0.062	-0.066	13.113	0.43
du -	1 11	16	-0.017	-0.019	13.189	0.51
i þi	լին	17	0.082	0.059	15.007	0.45
i di i	101	18	-0.057	-0.057	15.894	0.46
ig i		19	-0.068	-0.071	17.147	0.44
1 1	10	20	0.002	-0.061	17.148	0.51
1 1	1 1	21	-0.008	0.002	17.164	0.57
ų i	111	22	-0.013	-0.015	17.209	0.63
1 1	10	23	0.003	-0.010	17.212	0.69
L L L L L L L L L L L L L L L L L L L	1 1	24	0.017	-0.000	17.296	0.74
i j i	11	25	0.035	0.022	17.639	0.77
1 1	t i i	26	0.007	-0.011	17.653	0.81
i di t	101	27	-0.023	-0.037	17.797	0.85
ı þi	1	28	0.047	0.019	18.418	0.86
i ĝi	1 1	29	0.025	0.039	18.598	0.88
ų la	11	30	-0.024	-0.022	18.768	0.90
i)u	1 1	31	0.020	0.002	18.878	0.92
. du	1 1	32	0.021	0.015	19.001	0.94
i) i	1 1 1	33	0.018	0.029	19.090	0.95
i li	1 11	34	-0.000	-0.014	19.090	0.96
ւիւ	ւի	35	0.041	0.044	19.576	0.96
	10	36		-0.053	20.870	0.96

There are no more bars exceeding the limits. The bar on the third lag is near the Bartlett's Band. We will check the significance of this term in the model. Since AC is larger than the PAC, we will try adding an MA(3) term in the model.


Dependent Variable: DLOG(EXPORTS,1,12) Method: Least Squares Date: 03/24/16 Time: 17:24 Sample (adjusted): 1992M03 2012M11 Included observations: 249 after adjustments Convergence achieved after 3 iterations MA Backcast: 1990M12 1992M02

Variable	Coefficient	Std. Error t-Statistic		Prob.
C AR(1) MA(3) SMA(12)	-0.000557 -0.385235 0.134377 -0.849298	0.000803-0.6933000.059211-6.5061000.0607552.2117790.029001-29.28464		0.0000 0.0279
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.538379 0.532726 0.069493 1.183179 312.6656 95.24612 0.000000	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir Durbin-Watse	-9.15E-05 0.101662 -2.479242 -2.422737 -2.456498 2.032039	
Inverted AR Roots Inverted MA Roots	39 .99 .4985i 00+.99i 85+.49i	.85+.49i .26+.44i 4985i 8549i	.8549i .2644i 49+.85i 99	.49+.85i 0099i 51

The MA(3) is significant and will be retained in the model. Our final model is denoted by ARIMA(1,1,3)x(0,1,1).

FORECASTS

We will now forecast the total exports from 2012M12 to 2013M04.

Forecast: EXPORTSF			
Actual: EXPORTS			
Forecastsample:1991M012013M04			
Adjusted sample: 1992M03 2012M12			
Included observations: 249			
Root Mean Squared Error 2.24E-			
Mean Absolute Error	1.57E+08		
Mean Abs. Percent Error	5.280547		
Theil Inequality Coefficient	0.036157		
Bias Proportion	0.000466		
Variance Proportion	0.001148		
Covariance Proportion	0.998386		

QUARTER	POINT FORECAST	90% INTERVAL FORECAST	
		LOWER	UPPER
2012M12	3,616,012,819.271	766,601,182.156	6,465,424,456.386
2013M01	3,198,626,335.670	930,311,479.950	5,466,941,191.390
2013M02	3,315,975,549.009	885,273,246.627	5,746,677,851.391
2013M03	3,616,323,580.809	950,352,395.885	6,282,294,765.733
2013M04	3,319,027,511.416	775,558,444.799	5,862,496,578.033

CONCLUSION

ARIMA modeling was applied to a Philippine exports time series with the help of EViews. The ADF test confirmed that the initial model *log(exports)* has a unit root and needed a single differencing to make it stationary. In addition, the model has been revised to deseasonalize the series. Lastly, the selected model was used to construct a forecast.