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INTRODUCTION 

 

Excessive sugar consumption does not promote healthy living. Nonetheless, very few 

Americans consume sugar in recommended moderate amounts. In fact, worldwide, we 

consume about 500 extra calories a day from sugar. With all these shocking statistics and facts 

concerning sugar, I wanted to analyze whether the supply of sugar was now decreasing over 

time. The ERS Food Availability Data System (FADS) includes three distinct but related data 

series on food and nutrient availability for consumption. High Fructose Corn Syrup is one of the 

most concentrated source of sugar, thus, we focused our analysis on this commodity, as a 

substitute for sugar. Our dataset provide US yearly high fructose corn syrup availability for the 

years 1960 to 2013. 

As we can see from Figure 1, the availability of high fructose corn syrup increased 

significantly from 1980 to 2000. Thereafter, the availability of the commodity decreased. Could 

we assume that it is due to increase awareness of the adverse effects of sugar? How could we 

best model this dataset to forecast future trends? We decided to use ARIMA models, as 

described in the “Time Series Analysis with Applications in R” text by Cryer and Chan, in order 

to determine a model fitted for our data. 
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MODEL SPECIFICATION 

 

To specify a model for our data, we first begin examining the behavior of the 

autocorrelation factors at various yearly lags. We can see in Figure 2 that at later lags of (13-

15), the autocorrelation factor decreased down to values close to zero, which is our desired 

outcome since we would like to work with a stationary time series. Nevertheless, due to the 

large amount of parameters it would require to reach a stationary process and since most of 

the autocorrelation factors were beyond the confidence interval of standard errors, we decided 

to take differences in order to reduce the amount of parameters used in the model. Concerning 

the type of model that could best fit our data, we recognized that the tailing off effect of the 

autocorrelation function most likely mean that our data followed an autoregressive process: 

Yt= ɸ1Y(t−1)+ ɸ2Y(t−2)+…+ ɸpY(t-p) + ϵt. 
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Figure 3 displays the autocorrelation of the first difference and we can see that many 

autocorrelation factors exceed the confidence interval bound, which is 2 times standard error. 

 

However, in Figure 4, we can see that most autocorrelation factors fall in between the 

confidence interval bounds. The only two values that are outside these bounds are lag 1 and 

lag2, which caused us to assume that an ARIMA(2,2,0) model would probably be the best model 

fit. To confirm our assumptions, we fit 2 models to our 2nd difference dataset: ARIMA(1,2,0) and 

ARIMA(2,2,0).   
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MODEL FITTING 

 From our model fitting, we were able to determine the parameters, along with the 

intercept values for ARIMA(1,2,0) and ARIMA(2,2,0) models, respectively (Table 1 and 2). 

W(t)= -.0123 -.3607W(t−1) +ϵt , under ARIMA(1,2,0): 

Table 1 
## arima(x = sec_dif, order = c(1, 0, 0)) 
##  
## Coefficients: 
##           ar1         intercept 
##        -0.3607     -0.0123 
## s.e.  0.1373      0.0531 
##  
## sigma^2 estimated as 0.2321:  log likelihood = -31.06,  aic = 68.12 

## [1] -0.62976009 -0.09154645 

 

W(t)= -.0124 -.4165W(t−1) -.1502W(t−2) +ϵt , under ARIMA(2,2,0): 

Table 2 
## arima(x = sec_dif, order = c(2, 0, 0)) 
##  
## Coefficients: 
##           ar1      ar2  intercept 
##       -0.4165  -0.1502    -0.0124 
## s.e.   0.1462   0.1446     0.0457 
##  
## sigma^2 estimated as 0.2264:  log likelihood = -30.53,  aic = 69.05 

## [1] -0.7030861 -0.1298659 

## [1] -0.4336917  0.1332109 

 

 

MODEL DIAGNOSTIC 

 To determine which of our two ARIMA models was the best fit, we analyzed the 

residuals and came up with two main hypothesis:  

Ho: corr(es,et) =0 (data are also independently distributed) 
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H1: corr(es,et) ≠ 0 (residual exhibit serial corroletion) 

We analyzed whether any of the autocorrelations were different from zero by using 

Box-Pierce Q-statistic and correlograms. We also determined whether our residuals were 

normally distributed by using q-q plots. 

We can see from the Box-Ljung’s p-values below that both models do NOT reject the 

null hypothesis (Ho). Thus, we can assume that the residuals are independently distributed and 

follow a white noise process. 

##  Box-Ljung test for ARIMA(1,2,0)  
## data:  AR1$residuals 
## X-squared = 6.7032, df = 10, p-value = 0.7531 

##  Box-Ljung test for ARIMA(2,2,0)  
## data:  AR2$residuals 
## X-squared = 4.2369, df = 10, p-value = 0.936 

 

The correlograms in Figure 6 and 8, for both ARIMA models, also confirm that we should 

NOT reject the null hypothesis as residual values are all closed to zero.  

  

However, when examining the q-q plots for normality in Figure 5 and 7, for 

ARIMA(1,2,0) and ARIMA(2,2,0) respectively, we realized that the latter was a better fit. In fact, 

the q-q plot for ARIMA(2,2,0) showed that the residuals followed a normal distribution as they 

were closer to the regression line than under ARIMA(1,2,0), which we rejected.  
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FORECASTING & CONCLUSION 

 

Using our selected ARIMA(2,2,0) model, we can see that sugar availability is forecasted 

to decrease slightly before stabilizing in the next couple of years. The confidence intervals show 

that the accuracy of the forecasts remains constant over time. Overall, we can conclude that 

ARIMA(2,2,0) is an appropriate model for our data.  
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