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 Introduction: 

For my project, I thought it would be interesting to analyze American birth counts. There are many factors 

that could affect yearly birth counts such as improved birth control methods, the affordable care act 

bringing free birth control to women, increased percentage of women in the labor force focusing on their 

careers, the general attitude of young women to postpone childbirth, and most importantly the increasing 

costs associated with childbirth, and raising a child. More importantly, I am interested in analyzing whether 

past data will have an impact on future data. I would hypothesize that individuals brought up without 

siblings would be more likely to have one or fewer children. While individuals with siblings, would be 

more likely to have more than one child.  

 

I was interested in taking this project a step further, and analyzing the data by month. I am interested to see 

if seasonality is a factor. I would hypothesize there to be a larger number of births late in the year, between 

August and November; the reason being conception rates would be higher in the colder moths, November 

to March.  

 

Data: 

For this project, I analyzed 6.5 years’ worth of data by month, from January 2009-June 2015. The raw data 

of American live birth rates per 1,000 populations by month and year can be seen below, and was obtained 

from;  

http://www.cdc.gov/nchs/products/nvsr/monthly_provisional_notice.htm 

 

 
 

Seasonality: 

As discussed previously, a check for seasonality is appropriate. As can be seen in the line graph of raw 

data, it is clear that there are consistently higher rates from late summer to early fall. I hypothesize this to 

be a direct result of increased conception rates in the colder months. Below is the table of raw data, with 

conditional formatting applied, which supports my theory of seasonality. It is clear that higher birth rates 

are present from June to September. 

http://www.cdc.gov/nchs/products/nvsr/monthly_provisional_notice.htm


 
 

It is of interest to de-seasonalize our data. We adjust each month’s birth rate by dividing it by its average 

relativity factor calculated from 2009-2014. After de-seasonlizing our data, it is clear there is a slight 

downward trend. 

 

 
 

Model Specification: 

Various plots and statistics aided me in choosing which model to test. The apparent downward trend which 

is clear in the previous graph suggests non-stationarity. Also, to further support the non-stationarity of the 

data is the plot of the sample ACF function. As you can see, the data does not quickly decrease to zero, and 

once there it does not stay there. Our point at which to determine if our data is significantly different from 

zero is .223 (1.96/sqrt(78)). As you can see, this is clearly not an autocorrelation graph of an MA process, 

as it does not cut off to 0, rather it seems to slowly decline. I am interested in testing the autoregressive 

function, as the autocorrelation graph seems to suggest it over the MA process. 

 

Month 2009 2010 2011 2012 2013 2014 2015

       January 13.00             12.40             12.20             12.00             12.10             12.10             12

       February 13.50             12.80             12.50             12.30             12.10             12.30             12.2

       March 13.40             12.90             12.50             12.30             12.00             12.00             12.1

       April 13.40             12.80             12.30             12.00             12.00             12.20             12.2

       May 13.30             12.50             12.40             12.50             12.30             12.40             12

       June 13.80             13.20             13.20             12.70             12.30             12.50             12.5

       July 14.20             13.10             13.10             13.10             13.00             13.20             

       August 13.80             13.40             13.60             13.60             13.20             13.10             

       September 14.30             13.90             13.50             13.20             13.00             13.30             

       October 13.30             12.80             12.40             13.00             12.70             12.70             

       November 12.60             12.80             12.50             12.60             12.20             12.10             

       December 13.10             12.80             12.30             12.10             12.50             12.60             



 
 

 

 

 

Differencing 

Clearly the above graph is not stationary; therefore I have decided to take the first difference. The first 

differenced autocorrelation graph below is clearly more favorable. Going one step further, I decided to 

analyze the second difference, of an autoregressive of order 2, which can be seen below. It is hard to tell if 

it adds any additional value, though it is true that more values can be seen to be not significantly different 

from 0. 

  

 



 
 

Model Diagnostics 

For my analysis, I will be using excels regression add on to attempt to fit an ARI(1,1), ARI(1,2) ARI(2,1) 

and ARI(2,2).  The results of each can be seen on the respective tab of the attached workbook.  

 

 
 

The 𝑅2 value is used to measure the percentage of the data measured by the model; a higher 𝑅2 value 

implies a better fit. According to the 𝑅2 value, the ARI(2,2) model seems to be the best fit.  

 

 The Durbin Watson statistic is used to predict the existence of autocorrelation within the residuals. The 

value ranges between 0 and 4, 2 being favorable; i.e. there is no autocorrelation in the residuals. A value 

nearing 0 implies a positive correlation, while a value nearing 4 implies a negative correlation. As can be 

seen by the above table, the ARI(1,2) and ARI(1,1)  are clearly nearing 4, and thus have negative 

autocorrelation. Our best fitted model, ARI(2,2) has a  Dubrin Watson Statistic nearing 2, which implies no 

autocorrelation. We therefore conclude, that the ARI(2,2) is the best fit for our model. 

 

Below is the summary statistics of the ARI(2,2)process.  

 

Model Adjusted Durbin Watson

ARI(1,1) 0.36 2.61

ARI(2,1) 0.53 1.75

ARI(1,2) 0.48 3.08

ARI(2,2) 0.80 2.49

𝑅2



 
 

The equation generated by this model is of the form: 

 

Y(t) = -.004454 – 1.242478(𝑌𝑡−1 –  𝑌𝑡−2) –  .0781464(𝑌𝑡−2 –  𝑌𝑡−3) 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.892891

R Square 0.7972544

Adjusted R Square 0.7915433

Standard Error 0.2336173

Observations 74

ANOVA

df SS MS F Significance F

Regression 2 15.23749927 7.618749635 139.5962905 2.4933E-25

Residual 71 3.87496847 0.054577021

Total 73 19.11246774

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept -0.004454 0.02715933 -0.164011246 0.870188294 -0.058608601 0.0497 -0.05861 0.0497

X Variable 1 -1.242478 0.074702038 -16.63244759 3.40813E-26 -1.391429356 -1.09353 -1.39143 -1.09353

X Variable 2 -0.781464 0.075067195 -10.41019342 6.19091E-16 -0.931143756 -0.63178 -0.93114 -0.63178


