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Introduction:  

I decided to dedicate my Time Series project to an analysis that will actually prove useful in my 
professional position: an analysis of the seasonality adjustments used in Loss Cost trends for 
Homeowners insurance.  While Homeowners insurance does cover certain liabilities, a majority of losses 
historically have been related to the physical property of the home and its contents.  Losses in this line 
of insurance business are therefore very susceptible to external influences such as weather, 
construction codes, availability of building materials, etc.  Many of these factors, particularly weather, 
are notably seasonal.  Thus, one can reasonably expect some seasonality in loss trends.   

Often times, actuaries will attempt to smooth this kind of seasonality by using 4-quarter rolling 
data rather than adjusting the quarterly data for average quarterly deviations.  4-quarter rolling data 
means that the quarterly data is annualized by also including the three prior quarters (e.g. 2015Q1 
includes data from 2015Q1, 2014Q4, 2014Q2, and 2014Q1).  As each data point represents a full year of 
losses, the seasonality is eliminated.  However, I have heard anecdotally that this adjustment can “over-
smooth” the data, and can imply trends that aren’t really there.  For instance, if 2014Q1 was a terrible 
loss year, this will show up in 2014Q1, 2014Q2, 2014Q3, and 2014Q4.  If I am trying to predict Pure 
Premiums for 2015Q1, I would see abnormally high losses for my past 4 quarters, which could look like 
more of an upward trend than simply an outlier in a single quarter. 

There are many ways of smoothing or adjusting Pure Premiums before trying to use past trends 
to predict future losses (catastrophe loading, weather loading, large loss loading, etc.), but that is 
beyond the scope of this analysis.  I simply wish to adjust for seasonality both ways, attempt to specify a 
model for each method, and see how different the results really are.   

 
Data Source: 
I analyzed 11 years of homeowners loss data by quarter, from 1st Quarter 2005 to 4th Quarter 2015. The 
data comes from Insurance Services Office (ISO), Homeowners “FAST TRACK DATA” circular reports: 
https://www5.iso.com/circsearch/app/start.do 
As you require a login to access this data, the downloaded datafiles will be attached. 
Pure Premiums (otherwise known as Lost Costs) are calculated as average losses per home insured.  The 
pure premiums over time are shown in the following graph: 



 

 
All homeowners forms were included, and the data utilized was countrywide.  This gives the largest 
amount of data, for a more credible analysis.  Catastrophe losses were excluded from the analysis in 
order to minimize volatility. 
Seasonality Adjustment: 
Losses in a heavily property-driven line such as homeowners are generally considered very seasonal.  
The above graph clearly supports this idea, with Q3 pure premiums in each of the eleven years being 
higher than the other three quarters in each year (with the exception of 2014, in which pure premiums 
hold almost perfectly steady from Q2 to Q3).  The chart below of the raw data likewise illustrates this 
point: 

 
We therefore calculate average annual relativity factors for each quarter, which are shown below: 



Quarter Relativity Adjustment Factor 
Q1 1.01849358 
Q2 0.987357874 
Q3 0.939129664 
Q4 1.065244565 

 
After adjusting our data for seasonality using these factors, we end up with the below graph: 
 

 
This graph is much smoother than the one before adjusting for seasonality, and a slight upward trend is 
much more apparent, particularly for years 2005 through 2011, after which the graph levels out 
somewhat. 
Alternatively, using the 4-quarter rolling seasonality adjustment, we get the following graph: 

 
This graph is notably much smoother than the one that utilizes the average annual relativity 
adjustments, so at least the concept of “over-smoothing” using this methodology does seem readily 
apparent.   



 
Specifying a Model (average annual relativity factors): 
While the slight upward trend apparent from the seasonality-adjusted graph suggests that the model is 
non-stationary, we can further verify by plotting the ACF and PACF, as below: 

 

 
 
 
 
 



The Autocorrelation function tails off, rather than cutting off sharply to zero (or at least statistically 
insignificant) autocorrelation.  On the other hand, the PACF clearly appears to cut off after 1 lag.  Having 
an ACF that tails off and a PACF that cuts off after lag p is characteristic of an AR(p) model.  By contrast, 
MA(q) models have an ACF that cuts off after lag q and a PACF that tails off, and ARMA(p,q) models have 
an ACF and PACF that both tail off.  So an autoregressive model with p=1 seems most appropriate. 
Specifying a Model (4-Quarters Rolling): 
We can similarly plot the ACF and PACF for the 4-Quarter Rolling Model: 

 

 
The shape of the ACF and PACF graphs for 4-quarter rolling data is very similar to the ACV graph 
adjusted using average annual relativity factors for seasonality.  Thus, we can draw similar conclusions, 
and assume an autoregressive model with p=1 seems appropriate. 



 
Differencing: 
Since the series has positive autocorrelations out to a reasonably high number of lags, it likely requires 
differencing to correct non-stationarity.  A model with one order of differencing assumes that the 
original series has a constant average trend (e.g. a random walk), whereas a model with two orders of 
total differencing assumes that the original series has a time-varying trend.  It is hard to tell simply from 
the graph which better suits this particular dataset, so we graph the ACF and PACF functions for both 
the first-order and second-order differences. We start with the data that has been adjusted using 
average annual relativity factors.  These graphs are shown below: 

 

 



 

 
From these graphs it appears that the 2nd difference adds very little value.  In fact, more values are 
significantly different from 0 in the 2nd difference ACF and PACF than in the first difference graphs. 
We now create the same 4 graphs for the 4-Quarters Rolling data: 



 
 

 
 

 



 
In contrast to the data using average annual relativity factors to adjust for seasonality, the 4-quarters 
rolling data does, from the ACF and PACF graphs, appear to benefit from second differencing. 
 
Validation: 
To decide on a final model, I ran both the Seasonal-adjusted and 4-Quarter Rolling data through ARI(1,1) 
and ARI(1,2) regressions, to see which created the best fit.  The results of these regressions are 
summarized in the below table: 

 
R² is a quick measure of goodness of fit between the model and the actual data.  The Durbin Watson 
statistic is a number that tests for autocorrelation in the residuals from a statistical regression analysis. 
The Durbin-Watson statistic is always between 0 and 4, where a value of 2 means that there is no 
autocorrelation in the sample. 
It is clear that, for the data adjusted with seasonal factors, ARI(1,1) is a better choice than ARI(1,2).  Not 
only is the R² statistic higher, but the Durbin Watson statistic is also closer to 2, implying that there is 
less autocorrelation in the residuals for that model. 
For the  4-Quarter Rolling data, the R² is very slightly better for the ARI(1,1) model, but the Durbin 
Watson statistic is so much closer to 2 for the ARI(1,2) model that I believe it is a very slightly better fit 
overall (since its residuals have less autocorrelation).  However, for an easy apples-to-apples comparison 
with the data adjusted with seasonal factors, I will use the ARI(1,1) model for both datasets. 
 
 

Data Model R² Durbin-Watson Statistic
ARI(1,1) 0.926 1.9900
ARI(1,2) 0.897 2.1854
ARI(1,1) 0.992 1.5439
ARI(1,2) 0.991 1.95334-Quarters Rolling Data

Adjusted with Seasonal Factors



Results and Conclusion: 
We can graph the predicted results of the ARI(1,1) models vs the actual data, for a quick view of how 
well they appear to fit:

 

 
As you can see, the fits in both cases appear reasonable.  The fit of the 4-quarters rolling data is more 
precise, which was expected given its R² value shown earlier.   
 



 
Below is a table of the resulting estimates for ϕ1 using an ARI(1,1) model for both datasets: 

 
As you can see, the ϕ1 estimate for the 4-quarters rolling data is significantly higher than the data 
adjusted with seasonal factors.   
So what is going on?  When you use 4-quarters rolling data, one quarter and its subsequent quarter 
share ¾ of the underlying data.  For instance, 2014Q4 uses data from 2014Q1, 2014Q2, 2014Q3, and 
2014Q4, while 2015Q1 uses data from 2014Q2, 2014Q3, 2014Q4, and 2015Q1.  Therefore, the 
correlation between one quarter and its subsequent quarter is going to extremely high.  Even 2015Q3 
and 2014Q4 share a full quarter of their data, so even at lag 3 you’d expect significantly more 
correlation than while adjusting individual quarters. 
In addition, a curve fitted perfectly to 4 quarters rolling data is not made to predict the next quarter’s 
pure premiums, but rather the next quarter’s pure premiums combined with its prior 3 quarters.  As 
such, you would expect significantly higher weight to be put on the prior quarter’s data when predicting 
the next quarter, since they inherently share ¾ of the data to begin with.  This translates to a much 
higher estimate for ϕ1.  
When using Pure Premiums to select loss trends, it is important to understand your data and what you 
are trying to predict.  While the 4-quarters rolling data does help smooth more volatile loss trends, it 
gives an unnatural amount of weight to prior quarters that should more realistically be attributed to 
random fluctuations.  This is the concept of “over-smoothing” that I have heard anecdotally in my 
profession, and is something to be very aware of when using this sort of data.  For instance, just because 
you have a nice smooth trend of 4-quarter rolling pure premiums, you shouldn’t be too confident in 
your prediction for the next month. 
 
 

Data Value Hessian standard error Lower bound (95%) Upper bound (95%)
Adjusted with Seasonal Factors 0.095 0.151 -0.202 0.391

4-Quarters Rolling Data 0.818 0.087 0.648 0.988

ϕ1


