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Introduction 

Each year, millions of Americans suffer from a stroke, when lack of blood flow or internal 
bleeding cause brain cells to die. Stroke has recently been the second-leading cause of death in 
the US, behind heart attack. The two main types of stroke are ischemic (lack of blood flow) and 
hemorrhagic (internal bleeding). An ischemic stroke resulting from a blockage in blood vessels 
to the brain is called a cerebral infarction. I was curious if the mortality rate due to cerebral 
infarctions was increasing or decreasing. New advances in medicine would tend to reduce the 
number, while deteriorating overall health would tend to increase that number (higher 
prevalence of diabetes, high cholesterol, etc. which raise risk factors for stroke). Also, could the 
change in mortality rate be modeled by a time series, and if so, which type? Using excel, I would 
be limited to exploring AR models. 

 

Data 

CDC data are available online showing mortality rates over time 
(http://wonder.cdc.gov/controller/datarequest/D76). I looked at the rate per 100,000 of deaths 
caused by cerebral infarctions (ICD10 I63.00) from 2000 through 2010, shown by month. 

 



Analysis  

The first thing I wanted to do was visualize the data: 

 

I added blue lines to help spot seasonality. Sure enough, it appears that mortality rates spike in 
winter months. Also very noticeable is a huge drop in mortality during 2004 and 2005. I 
wondered if there had been a major breakthrough in treatment around that time, and after a 
quick google search, this was confirmed. “Devices that remove a clot in the brain expand the 
window to about eight hours after the stroke hits. The first such device, the Merci retriever, 
which the FDA approved in 2004, uses a corkscrew-like device to retrieve the clot. The other 
commonly used device is the Penumbra, which hospitals began using widely in 2007. It also 
sends a catheter up to the clot but then applies tPA to the clot to break it down. It then vacuums 
up the clot.” (http://articles.courant.com/2012-05-06/health/hc-stroke-solitaire-hartford-hospital-
0507-20120504_1_clot-corkscrew-like-device-interventional-neuroradiologist). These devices 
lengthen the window of time during which emergency doctors can treat a stroke, greatly 
reducing mortality. I decided to narrow my data set to exclude this period, since I do not expect 
breakthroughs of this magnitude to continue periodically going forward. The article indicated that 
these two devices were widely in use by 2007, so I decided to focus on years after that time. My 
new data set was limited to 2008 to 2010. The time plot for that period is as follows: 
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The mortality rate seems much more constant now, but a seasonality adjustment is in order. I 
removed the seasonality by dividing the mortality rate for each month and year by the average 
rate for that month over all three years. 
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Now the seasonality has been removed, but the linear trend slopes down, indicating a non-
stationary process. I decided to take the first differences to see if I could produce a stationary 
time series. 
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Now the trend appears to be more or less flat. I was satisfied with this series being stationary 
and proceeded to create the autocorrelation function. Rewriting the formula on page 109 in 
Excel, I came up with: 

 

More decay to zero would have been preferable to confirm stationarity. The sinusoidal pattern of 
the ACF suggests an AR(p) process. Not having a good way to perform a partial autocorrelation 
in excel in order to identify p, I decided to model AR(1), AR(2), and AR(3) to see which process 
explained the variation the best. Using the Data Analysis add-in, I obtained the following 
summary output: 
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AR(1) 

Regression Statistics 

Multiple R 0.64142302 

R Square 0.411423491 

Adjusted R Square 0.393030475 

Standard Error 0.058212385 

Observations 34 

 

AR(2) 

Regression Statistics 

Multiple R 0.795750183 

R Square 0.633218354 

Adjusted R Square 0.608766244 

Standard Error 0.040277117 

Observations 33 

 

AR(3) 

Regression Statistics 

Multiple R 0.800862798 

R Square 0.641381221 

Adjusted R Square 0.602957781 

Standard Error 0.040354882 

Observations 32 

 

I selected the AR(2) model, as it had a much higher adjusted R-square than the AR(1) model. 
AR(3) had a number only slightly lower, but with the added complexity I decided on the AR(2) 
model.  

 

 

 

 

 

 

 



A QQ plot of the residuals shows an approximately normally distributed set of residuals: 

 

Meaning the assumption of random and normally distributed residuals appears to hold. 

  Coefficients 

Intercept -0.000964472 

X Variable 1 -0.877521064 

X Variable 2 -0.582262114 

 

Using the Excel output for the regression parameters, we have that  

Y(t) - Y(t-1) = -0.000964472 - 0.8775210648(Y(t-1) - Y(t-2)) - 0.582262114(Y(t-2) - Y(t-3)) 

 

Conclusion  

I thought it was interesting the the mortality rate was declining. The final model was an ARI(2,1) 
model if you consider the differencing that was done to more the data more stationary. 
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Addendum – Data Transformations for Stationarity 

The ACF function if the differenced data appears to show possible non-stationarity: 

 

I attempted other transformations to obtain a better ACF. The ACF of the second difference: 

 

The ACF of the log-transformed series: 

 

As can be seen, neither of the alternatives decay well to zero, so the first difference was used. 
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Addendum – Forecasting 

Using the selected ARI(2,1) model, future values in the series can be forecasted. Using the 
equation Y(t) - Y(t-1) = -0.000964472 - 0.8775210648(Y(t-1) - Y(t-2)) - 0.582262114(Y(t-2) - Y(t-3)): 

Y(t) can be calculated by adding Y(t-1) to Y(t) - Y(t-1). The data can then be “re-seasonalized” 
by multiplying by the 2008-2010 average for that month. A check that the backwards 
transformation was without error can be made by comparing the 2008–2010 results to the 
actuals for those years. Graphing those years as well as the actuals and forecasts for 2011: 

 
 

The results are satisfying in that the forecasted values are very close to the actual figures. 
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