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l. Introduction

As air pollution became a serious problem to human health and an
important factor to global environment. For this issue, we are interest in the
daily changes of the PM1o (Particulate matter < 10 micrometers in size)
concentrations and would like to create a forecast model on it.

Data is collected in Chao-Chow Town and contains 1460 daily observations
from September 1999 to August 2003. Also, data for forecasting includes 61
daily observations from September to October in 2003.

Time series plot reveals there is seasonal cycle with a period of one year.
Hence, the main problem in our analysis is to estimate the seasonal effect.
After resolving the effect, model could be built and started to forecast.

In the first stage, we adopt two methods, include Small Trend Method and
Ordinary Least Square Method, to estimate the seasonal parameters. But
residuals still with small variation in the model and it might be other seasonal
effects. Therefore, we try to use spectral analysis to resolve it and outcomes
shows the same conclusion. But we obtain a new model from previous by
including the half-year-period seasonal parameter. After comparing the
validity with these models, the model constructed by spectral analysis has
minimal MSE and could be the best model for forecasting.

ll. Data Transformation
Based on the time series plot, we found original data may exist the

heteroscedasticity and could not be used. Hence, we try to apply logarithmic
transformation to regenerate these data and hope to reduce the variation.
After the data transformation, we obtain a stable data and further study are
based on these data.

Figure 2-1and 2-2 reveal that there has no apparent trend, but still with
strong seasonal effect. Therefore, we need to remove the seasonality when
building the model.



Figure 2-1: The time series plot of the original data
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Figure 2-2: The time series plot of the transformed data
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lll. The elimination of seasonality
Method 1: Small Trend Method
We set the general model:
Xt= me+ st+Yt

Where:

Xt denotes the transformed series; mtdenotes the trend component;
St denotes the seasonality component, and Yt denotes the error term.
As the trend is small, it is reasonable to assume that trend is constant and

denote mi for the i*" year. With 33255, = 0, we use m, = %Z?ii x;; tobe

the unbiased estimator. While for S;, j=1, 2, 3,..., 365, we use the estimates



S = iZ‘{(xi,j —m,) and satisfy the requirement that Y3535, = 0. The

estimated error term for day j of the it" year is

Y, =x;—-m—5,i=1234;, j=1.2,..,365

The deseasonalized and detrended observations, ¥,, = x; ; — m, — §,, have
no apparent seasonality or trend, and so the series of these observations is
stationary.

We now proceed to resolve on residual analysis. The ACF plot of residuals
represents an exponential decay, and the PACF plot shows that the partial
autocorrelation is significant at lag 3. It suggests we fit the residuals with an

AR(3) process. To set a model for X, let

_ _ — Nt o 2
Xt mt St (1_¢1B_¢232_¢3B3)1 nt WN(O, O-TI)

where X, —m; — s, is the stationary series.

The coefficients of the backward-shift operators are ¢,= 0.4637 ,
¢,=0.0192 and ¢3;=0.0841. But ¢, is not significant, we exclude it from
our model and then obtain following relationship :

_ Mt
~ (1-0.4637B — 0.0841B3)

Xy —my —s;

Then we need to check if 7, follows a white noise process. The ACF and
PACF plots of 7, show that there is no apparent structure in the model, so we
believe n, follows a white noise process. On the other hand, the modified
Ljung-Box test also concludes that {n,} is a white noise process.

After all we have the following model for X,:

— nt _ 2
Xe=m+ 5.+ (1-0.4637B—0.0841B3)’ Ne WN(O’ 077)

Figur 3-1: The seasonality component S; and the trend component m,
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Figure 3-2: The detrended and deseasonalized observations
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Figure 3-3: The ACF plot of the detrended and deseasonalized observations
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Figure 3-4: The PACF plot of the detrended and deseasonalized observations
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Table 3-1: Estimates of parameters of the AR(3) process

Table 3-1: Estimates of parameters of the AR(3) process

Type Coef SE Coef T =
AR 1 0.4637 0.0261 17.76 0.000
AR 2 0.0192 0.0288 0.67 0.505
AR 3 0.0841 0.0261 3.22 0.001

Number of observations: 1460




Figure 3-5: The ACF plot of 71,
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Figure 3-6: The PACF plot of 1,
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Table 3-2: Modified Ljung-Box Chi-Square statistic
Lag 12 24 36 48
Chi-Square 11.2 31.9 40.2 46.9
DF 9 21 33 45
p-vValue 0.264 0.060 0.182 0.395

Method 2: OLS Method
As the regular cycle of the series, we try to model X: with a cosine function.
Observe behavior of the series we consider following model:
Xt=u+R-cos(w-t+0)+ &,




where R denotes the amplitude, w denotes the frequency, 6 denotes the
phase, and gtdenotes the error term. Also, let x = @i be the estimator of .

These parameters are estimated by OLS method and results are:

X, =4.2262 + 0.5927c0s(0.0172t - 2.1862)

where 0.0172 = 2nt / 365.

Figure 3-7 shows a stationary process for the errorterm 1= X, — X . The
ACF plot of errors shows an exponential decay and a partial autocorrelation is
significant at lag 3. It suggests that we fit the errors with an AR(3)

et

process. Let X, — X, = (1—1B-d,B2—$B%)

is the stationary series,

e,~WN(0,02).
After model refinement, final model for X; is
X, = 4.2262 + 0.5927% cos(0.0172t — 2.1862)
€t
+ 1—-0.678B + 0.0539B2 — 0.0771B3

Figure 3-7: The series €t
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Figure 3-8: The ACF plot of €t
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Figure 3-9: The PACF plot of €
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Table 3-3: Estimates of parameters of the AR(3) process
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Type Coef SE Coef T P
AR 1 0.6078 0.0261 23.27 0.000
AR 2 -0.0539 0.0306 -1.76 0.078
AR 3 0.0771 0.0261 2.95 0.003
Number of observations: 1460
Figure 3-10: The ACF plot of e,
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Figure 3-11: The PACF plot of e,

1.0 —
08
06
04
02
0.0 ETSNTETLL CUVEPTT FESTITIT) LY ST VT ST PRRYY. TS § o m—— — vy S a—
-02
04 —
.06
.08
10—

Partial Autocorrelation

I 1 | | T | T |
10 20 30 40 50 60 70 80

Lag

Figure 3-12: The series €:with figure 3-7 fit
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Table 3-4: Modified Ljung-Box Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.0 24.3 30.3 35.5
DF 9 21 33 45
P-Value 0.277 0.278 0.601 0.844

IV. Spectral Analysis
We estimated the seasonal parameters by above function. Though we set a

reasonable model for X:, from figure 3-12 we observed there still exists a tiny
cycle with a period of about half a year. We think that the half-yearly cycle



also has impact on PM1o concentrations, hence we apply spectral analysis to
help us confirm our impact.
For «+X, consider the following Fourier transform decomposition

X = % + Y7 [agcos(wyt) + bysin(wgt)], where a, = 2X
corresponds to the mean behavior, m denotes the number of frequencies in
the Fourier Transform, wk denotes the Fourier frequencies = 2tk / n and n is
the number of observations. The spectral density function shows the strength
of the signal as a function of frequency, and the sum of the spectral density
function over frequency equals the variance of the time series data. We only
capture the most important origins of the variance and use them to estimate
the seasonality.

Figure 4-1 and 4-2 show the periodogram for PM1o concentrations at Chao-
Chow from September 1999 to August 2003. The signals at the yearly and
half-yearly frequencies are easily visible. The largest peak visible in figure 4-1
occurs at a frequency of 0.01721 day-1, or a period of 365 days; the second
largest peak occurs at a frequency of 0.03443 day-1, which is corresponding
to the half-yearly pattern. We have the following model

X; =4.226 - 0.34338c0s(0.01721t) + 0.4831sin(0.0172t)
+ 0.004236c0s(0.03443t) + 0.1064sin(0.03443t) + n,
where n; denotes the noise term including all other signals. tn

Figure 4-3 shows no apparent trend or seasonality, which we believe that
the series {n;} is stationary. The ACF plot of {n;} represents an exponential
decay, and the PACF plot shows that the partial autocorrelation is significant
only at lag 1. It suggests we fit the noise term with an AR(1) process. We set
model for X: be

v _ _ ¢ 2
X, — X, = (1_;3), & ~WN(0,0%)

where X = 4.226 — 0.34338 cos(0.01721¢t) + 0.4831sin(0.01721¢t) +
0.004236c0s(0.03443¢t) + 0.1064sin(0.03443¢), t = 0,1,2,...1459

Substituting ¢= 0.5886 back into the model we obtain the relationship

v e
Xe — X = (1-0.5886B)

Similar to previous analysis, we need to check if ¢, follows a white noise
process. The ACF and PACF plots of &, show that there is no apparent



structure in the model, so we believe that &, follows a white noise process.

The result of the modified Ljung-Box test supports the conclusion.

The final model for Xt is as the following:
X =4.226 — 0.34338 cos(0.01721t) + 0.4831in(0.01721¢t) +

0.004236c0s(0.03443¢t) + 0.1064sin(0.03443¢) +

e
1-0.5886B’

t=0,1,2,...1459

Figure 4-1: The periodogram of the PM1o0 concentrations over frequency
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Figure 4-2: The periodogram of the PM1o0 concentrations over period
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Figure 4-3: The series {n;}
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Figure 4-4: The ACF plot of n,
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Figure 4-5: The PACF plot of n,
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Table 4-1: Estimates of parameters of the AR(1) process

Type Coef SE Coef T P
AR 1 0.5886 0.0212 27.81 0.000
Number of observations: 1460

Figure 4-6: The ACF plot of ¢,
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Figure 4-7: The PACF plot of &,
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Table 4-2: Modified Ljung-Box Chi-Square statistic

Lag 12 24 36 48
Chi-Square le.7 34.8 41.8 47.1
DF 11 23 35 47
P-Value 0.117 0.055 0.199 0.4¢68

V. The Comparison among the Three Models
We have already built models for Xt and the difference among them lies on

the estimations of seasonality. After modeling X, we next want to find out
which one performs better. We make a comparison among these models at
the aspect of forecasting ability. Before that, we are supposed to give the
criterion for judging which model to be better in prediction. The criterion is
based on the out-sample MSE and the number of outliers. The smaller the
out-sample MSE, and the less the number of outliers, the better the model is.

We give one-step prediction to X, +and X.,, +respectively and then
make a comparison based on the prediction results. As mentioned in the
introduction, the data we use for prediction contains 61 observations from
September to October in 2003.

1.Model Derived from Small Trend Method



. . _ n
The model is given by X, =m; + S, + —— ", n.~WN(0,07)

Figure 5-1: True values VS Fitted values — The Small Trend Method
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Figure 5-2: Results of the prediction for X.,; — The Small Trend Method
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Table 5-1: Prediction results — The Small Trend Method

To be predicted X, X,
SSE 6.1749 8.6619
DF used 369 369
MSE 0.1065 0.1493
Average 95% CI width 1.1067 1.3079
Number of Outliers 4 3

2 .Model Derived from OLS Method

et
(1-0.6078B+0.0539B2—-0.0771B3)

X = 4.2262 + 0.5927¢0s(0.0172t — 2.1862) +

Figure 5-4: True values VS Fitted values — The OLS Method
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Figure 5-6: Results of the prediction for X.,, — The OLS Method
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Table 5-2: Prediction results — The OLS Method

To be predicted X,a X,
SSE 4.6279 6.5546
DF used 3 5
MSE 0.0798 0.1130
Average 95% CI width 1.2148 1.4216
Number of Outliers 3 2

3.Model Derived from Spectral Analysis
The model is given by

X; = 4.226 — 0.34338c05(0.01721¢t) + 0.4831sin(0.01721t)

| £,
+ 0.004236 cos(0.03443t) + 0.1064 sin(0.03443t) — 1 — 0.5886B




Figure 5-7: True values VS Fitted values — Spectral Analysis

55 —true value

fitted value

5 _______

45 ﬁ =L

4 {l

{

35 ¢

3 _______________________________________________
Be = = B 82 5 2 = = 8 2 B & = = 8 B E £ = =T @ B o
2§ 22 %32 3828838858858 8s58¢8¢5§ 8

Figure 5-8: The OLS fit and Spectral Analysis fit
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Figure 5-10: Results of the prediction for X.,, — Spectral Analysis

Table 5-3: Prediction results — Spectral Analysis

To be predicted X, D, G
SSE 4.5734 6.4249
DF used 5 5
MSE 0.0762 0.1071
Average 95% CI width 1.2098 1.4103
Number of Outliers 3 2
Table 5-4: The Overall Prediction results
Small Trend OLS Spectral Analysis
To be predicted X, X, X, X, X, X,
SSE 6.1749 8.6619 462789 6.554555 45734 6.4249
DF used 369 369 3 3 5 5
MSE 0.1065 0.1493 0.079791 0.11301 0.0762 0.1071
Average 95% CI width 1.1067 1.3079 1.214798 1.421603 1.2098 1.4103
Number of Qutliers 4 3 3 2 3 2

VI. Conclusion

Assume the model obtained from the small trend method be model 1,

model 2 is from OLS method and model 3 is from spectral analysis.

Due to model 1 contains the average values of the past four years, it is

easily




affected by some extreme values. For this reason, predicted values of model
1 represent large fluctuations as we seen in figures 5-2 and 5-3. But due to
easily fluctuations, it often makes errors in forecast.

For model 2 and model 3, fluctuations of the predicted values are smaller.
The predicted value with model 2 is mainly changing with its past three
observation values while the predicted value with model 3 is mainly varying
with previous observation value. Hence, these two model with fewer errors
than model 1.

In table 5-4, model 1 has the largest MSE and more outliers than other two
models, which reveals model 1 may not be a good forecast model. At last, we
build model 3 with the consideration of the half-year seasonality component,
the MSE in model 3 is smaller than model 2. Also, the 95% CI of model 3 is
narrower than that of model 2. Hence, we make a little improvement on our
model by losing 2 degrees of freedom. At last we conclude model 3 is the best

one from these model to forecast future outcome.



