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I. Introduction 
  As air pollution became a serious problem to human health and an 
important factor to global environment. For this issue, we are interest in the 
daily changes of the PM10 (Particulate matter < 10 micrometers in size) 
concentrations and would like to create a forecast model on it.  
Data is collected in Chao-Chow Town and contains 1460 daily observations 
from September 1999 to August 2003. Also, data for forecasting includes 61 
daily observations from September to October in 2003. 
  Time series plot reveals there is seasonal cycle with a period of one year. 
Hence, the main problem in our analysis is to estimate the seasonal effect. 
After resolving the effect, model could be built and started to forecast. 
  In the first stage, we adopt two methods, include Small Trend Method and 
Ordinary Least Square Method, to estimate the seasonal parameters. But 
residuals still with small variation in the model and it might be other seasonal 
effects. Therefore, we try to use spectral analysis to resolve it and outcomes 
shows the same conclusion. But we obtain a new model from previous by 
including the half-year-period seasonal parameter. After comparing the 
validity with these models, the model constructed by spectral analysis has 
minimal MSE and could be the best model for forecasting. 

 
II. Data Transformation 
  Based on the time series plot, we found original data may exist the 
heteroscedasticity and could not be used. Hence, we try to apply logarithmic 
transformation to regenerate these data and hope to reduce the variation. 
After the data transformation, we obtain a stable data and further study are 
based on these data. 
  Figure 2-1and 2-2 reveal that there has no apparent trend, but still with 
strong seasonal effect. Therefore, we need to remove the seasonality when 
building the model. 



Figure 2-1: The time series plot of the original data 

 

 

Figure 2-2: The time series plot of the transformed data  

 
 
III. The elimination of seasonality 
Method 1: Small Trend Method 
  We set the general model: 

Xt = mt + st +Yt 
Where:  

Xt denotes the transformed series; mt denotes the trend component;  
st denotes the seasonality component, and Yt denotes the error term. 
  As the trend is small, it is reasonable to assume that trend is constant and 
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estimated error term for day j of the 𝑖"#	year is 
𝑌/,3 = 𝑥1,& − 𝑚/ − 𝑠3, i= 1,2,3,4;  j= 1,2,…,365 
  The deseasonalized and detrended observations, 𝑌/,3 = 𝑥1,& − 𝑚/ − 𝑠3, have 
no apparent seasonality or trend, and so the series of these observations is 
stationary. 
  We now proceed to resolve on residual analysis. The ACF plot of residuals 
represents an exponential decay, and the PACF plot shows that the partial 
autocorrelation is significant at lag 3. It suggests we fit the residuals with an 
AR(3) process. To set a model for t X , let 

  𝑋" − 𝑚" − 𝑠" =
9:
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, 	𝜂"~𝑊𝑁 𝑜, 𝜎9G   

where 𝑋" − 𝑚" − 𝑠" is the stationary series. 
  The coefficients of the backward-shift operators are 𝜙+= 0.4637 , 
𝜙G= 0.0192 and 𝜙'= 0.0841. But  𝜙G is not significant, we exclude it from 
our model and then obtain following relationship : 

𝑋" − 𝑚" − 𝑠" =
𝜂"

1 − 0.4637𝐵 − 0.0841𝐵'  

  Then we need to check if 	𝜂"  follows a white noise process. The ACF and 

PACF plots of 	𝜂"	show that there is no apparent structure in the model, so we 
believe	𝜂"  follows a white noise process. On the other hand, the modified 
Ljung-Box test also concludes that {	𝜂"} is a white noise process. 

  After all we have the following model for 𝑋": 

   𝑋" = 𝑚" + 𝑠" +
9:
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, 	𝜂"~𝑊𝑁 𝑜, 𝜎9G  

 Figur 3-1: The seasonality component 𝑆" and the trend component 𝑚" 

 
 



Figure 3-2: The detrended and deseasonalized observations 

 
Figure 3-3: The ACF plot of the detrended and deseasonalized observations 

 
Figure 3-4: The PACF plot of the detrended and deseasonalized observations 

 
Table 3-1: Estimates of parameters of the AR(3) process 

 
 
 



Figure 3-5: The ACF plot of 	𝜂" 

 

Figure 3-6: The PACF plot of		𝜂" 

 
Table 3-2: Modified Ljung-Box Chi-Square statistic 

 
 

Method 2: OLS Method 
  As the regular cycle of the series, we try to model Xt with a cosine function. 
Observe behavior of the series we consider following model: 

Xt = μ + R．cos(ω．t + θ ) + εt , 



where R denotes the amplitude, ω denotes the frequency, θ denotes the 
phase, and ε t denotes the error term. Also, let 𝑥 = 𝑢 be the estimator of μ. 

  These parameters are estimated by OLS method and results are: 
           𝑋" = 4.2262 + 0.5927cos(0.0172t - 2.1862) 
where 0.0172 = 2π / 365. 
  Figure 3-7 shows a stationary process for the error term ε t = 𝑋" − X . The 
ACF plot of errors shows an exponential decay and a partial autocorrelation is 
significant at lag 3. It suggests that we fit the errors with an AR(3) 

process. Let 𝑋" − 𝑋" =
W:
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 is the stationary series, 

𝑒"~𝑊𝑁 0, 𝜎WG . 
  After model refinement, final model for 𝑋" is  

𝑋" = 4.2262 + 0.5927× cos 0.0172𝑡 − 2.1862

+
𝑒"

1 − 0.678𝐵 + 0.0539𝐵G − 0.0771𝐵' 

Figure 3-7: The series ε t  

 
 
Figure 3-8: The ACF plot of ε t 

 
 



Figure 3-9: The PACF plot of ε t 

 

 
Table 3-3: Estimates of parameters of the AR(3) process 

 
 

Figure 3-10: The ACF plot of 𝑒" 

 

 
 
 
 
 



Figure 3-11: The PACF plot of 𝑒" 

 
 
Figure 3-12: The series ε t with figure 3-7 fit 

 
 
Table 3-4: Modified Ljung-Box Chi-Square statistic 

 

 
IV. Spectral Analysis 
  We estimated the seasonal parameters by above function. Though we set a 
reasonable model for Xt , from figure 3-12 we observed there still exists a tiny 
cycle with a period of about half a year. We think that the half-yearly cycle 



also has impact on PM10 concentrations, hence we apply spectral analysis to 
help us confirm our impact. 
For t X , consider the following Fourier transform decomposition 
  𝑋" =

ab
G
+ 𝑎d𝑐𝑜𝑠 𝜔d𝑡 + 𝑏d𝑠𝑖𝑛 𝜔d𝑡i

d*+ , where 𝑎R = 2𝑋 

corresponds to the mean behavior, m denotes the number of frequencies in 
the Fourier Transform, ωk denotes the Fourier frequencies = 2πk / n and n is 
the number of observations. The spectral density function shows the strength 
of the signal as a function of frequency, and the sum of the spectral density 
function over frequency equals the variance of the time series data. We only 
capture the most important origins of the variance and use them to estimate 
the seasonality. 
  Figure 4-1 and 4-2 show the periodogram for PM10 concentrations at Chao-
Chow from September 1999 to August 2003. The signals at the yearly and 
half-yearly frequencies are easily visible. The largest peak visible in figure 4-1 
occurs at a frequency of 0.01721 day-1, or a period of 365 days; the second 
largest peak occurs at a frequency of 0.03443 day-1, which is corresponding 
to the half-yearly pattern. We have the following model  
 𝑋" = 4.226 - 0.34338cos(0.01721t) + 0.4831sin(0.0172t)  
     + 0.004236cos(0.03443t) + 0.1064sin(0.03443t) + 𝑛" 
where 𝑛" denotes the noise term including all other signals. t n 
  Figure 4-3 shows no apparent trend or seasonality, which we believe that 
the series {𝑛"} is stationary. The ACF plot of {𝑛"} represents an exponential 
decay, and the PACF plot shows that the partial autocorrelation is significant 
only at lag 1. It suggests we fit the noise term with an AR(1) process. We set 
model for Xt be 

   𝑋" − 𝑋" =
j:

+;<>
, 𝜉"	~	𝑊𝑁 0, 𝜎jG  

where 𝑋 = 4.226 − 0.34338 cos 0.01721𝑡 + 0.4831 sin 0.01721𝑡 +
0.004236𝑐𝑜𝑠 0.03443𝑡 + 0.1064𝑠𝑖𝑛 0.03443𝑡 , t = 0,1,2,...1459 
 
  Substituting ϕ= 0.5886 back into the model we obtain the relationship 

    𝑋" − 𝑋" =
j:

+;R.)TT(>
 

Similar to previous analysis, we need to check if 𝜉" follows a white noise 
process. The ACF and PACF plots of 𝜉"	show that there is no apparent 



structure in the model, so we believe that 𝜉" follows a white noise process. 
The result of the modified Ljung-Box test supports the conclusion. 
  The final model for X t is as the following: 
𝑋 = 4.226 − 0.34338 cos 0.01721𝑡 + 0.4831 sin 0.01721𝑡 +

0.004236𝑐𝑜𝑠 0.03443𝑡 + 0.1064𝑠𝑖𝑛 0.03443𝑡 + j:
+;R.)TT(>

, t = 0,1,2,...1459 

Figure 4-1: The periodogram of the PM10 concentrations over frequency  

 
 



Figure 4-2: The periodogram of the PM10 concentrations over period  

 

 

 

Figure 4-3: The series {𝑛"} 

 
 



Figure 4-4: The ACF plot of 𝑛" 

 
Figure 4-5: The PACF plot of 𝑛" 

 
Table 4-1: Estimates of parameters of the AR(1) process 

 

Figure 4-6: The ACF plot of 𝜉"  

 

 



Figure 4-7: The PACF plot of 𝜉" 

 
 
Table 4-2: Modified Ljung-Box Chi-Square statistic 

 

 

V. The Comparison among the Three Models 
  We have already built models for X t and the difference among them lies on 
the estimations of seasonality. After modeling X t , we next want to find out 
which one performs better. We make a comparison among these models at 
the aspect of forecasting ability. Before that, we are supposed to give the 
criterion for judging which model to be better in prediction. The criterion is 
based on the out-sample MSE and the number of outliers. The smaller the 
out-sample MSE, and the less the number of outliers, the better the model is. 
  We give one-step prediction to 𝑋op+ + and 𝑋opG + respectively and then 
make a comparison based on the prediction results. As mentioned in the 
introduction, the data we use for prediction contains 61 observations from 
September to October in 2003. 
 
1.Model Derived from Small Trend Method 



  The model is given by  𝑋" = 𝑚" + 𝑆" +
9:
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Figure 5-1: True values VS Fitted values － The Small Trend Method 

 

Figure 5-2: Results of the prediction for 𝑋op+ － The Small Trend Method 

 

 
Figure 5-3: Results of the prediction for 𝑋opG － The Small Trend Method 

 
 



Table 5-1: Prediction results － The Small Trend Method 

 
 
2.Model Derived from OLS Method 

 𝑋" = 4.2262 + 0.5927𝑐𝑜𝑠 0.0172𝑡 − 2.1862 	+	 W:
+;R.(RST>pR.R)'q>?;R.RSS+>@

 

 
Figure 5-4: True values VS Fitted values － The OLS Method 

 

 
Figure 5-5: Results of the prediction for t 1 X + － The OLS Method 

 
 



Figure 5-6: Results of the prediction for 𝑋opG － The OLS Method 

 
 
Table 5-2: Prediction results － The OLS Method 

 
 
3.Model Derived from Spectral Analysis 
  The model is given by  
𝑋" = 4.226 − 0.34338𝑐𝑜𝑠 0.01721𝑡 + 0.4831𝑠𝑖𝑛 0.01721𝑡

+ 0.004236 cos 0.03443𝑡 + 0.1064 sin 0.03443𝑡 −
𝜉"

1 − 0.5886𝐵 

 



Figure 5-7: True values VS Fitted values － Spectral Analysis 

 
 
Figure 5-8: The OLS fit and Spectral Analysis fit 

 
 
Figure 5-9: Results of the prediction for 𝑋op+ － Spectral Analysis 

 



Figure 5-10: Results of the prediction for 𝑋opG － Spectral Analysis 

 
Table 5-3: Prediction results － Spectral Analysis 

 
 
Table 5-4: The Overall Prediction results 

 

 

VI. Conclusion 
  Assume the model obtained from the small trend method be model 1, 
model 2 is from OLS method and model 3 is from spectral analysis. 
  Due to model 1 contains the average values of the past four years, it is 
easily 



affected by some extreme values. For this reason, predicted values of model 
1 represent large fluctuations as we seen in figures 5-2 and 5-3. But due to 
easily fluctuations, it often makes errors in forecast. 
  For model 2 and model 3, fluctuations of the predicted values are smaller. 
The predicted value with model 2 is mainly changing with its past three 
observation values while the predicted value with model 3 is mainly varying 
with previous observation value. Hence, these two model with fewer errors 
than model 1. 
  In table 5-4, model 1 has the largest MSE and more outliers than other two 
models, which reveals model 1 may not be a good forecast model. At last, we 
build model 3 with the consideration of the half-year seasonality component, 
the MSE in model 3 is smaller than model 2. Also, the 95% CI of model 3 is 
narrower than that of model 2. Hence, we make a little improvement on our 
model by losing 2 degrees of freedom. At last we conclude model 3 is the best 
one from these model to forecast future outcome. 
 


