MS Module 2: Confidence intervals - practice problems

(The attached PDF file has better formatting.)

Exercise 2.1: Confidence interval

A sample from a normal distribution has summary statistics:

- n = 50
- $\sum x_i = 991$ $\sum x_i^2 = 20,635$
- A. What is the estimated μ , the mean of the normal distribution?
- B. What is the estimated σ , the standard deviation of the normal distribution?
- C. What is the 95% confidence interval for μ ?

Part A: The estimated $\mu = 991 / 50 = 19.82$.

Part B: The estimated $\sigma = ((20,635 - 991^2/50)/(50 - 1))^{0.5} = 4.5026$

Part C: The 95% confidence interval is

- Lower bound: $19.82 1.96 \times 4.5025 / 50^{0.5} = 18.5720$
- Upper bound: $19.82 + 1.96 \times 4.5025 / 50^{0.5} = 21.0680$

Exercise 2.2: Confidence intervals

A statistician forms confidence intervals for the mean of a normally distributed population from a sample of 80 observations.

- The upper bound of the 95% confidence interval is 5.
- The lower bound of the 90% confidence interval is 1.
- A. What is the estimated standard deviation of the population?
- B. What is the estimated mean of the population?

Part A: Let μ be the estimated mean and σ be the estimated standard deviation.

- The (1–z) confidence interval for the mean is $(\mu z_{\omega/2} \times \sigma, \mu + z_{\omega/2} \times \sigma)$. The $z_{\omega/2}$ values are 1.96 for a 95% confidence interval and 1.645 for a 90% confidence interval.

We have two equations in two unknowns:

$$\mu$$
 + 1.96 × σ /√n = 5 μ − 1.645 × σ /√n = 1

The first equation minus the second equation gives

$$\sigma/\sqrt{n} = (5-1) / (1.96 + 1.645) = 1.1096$$
, so $\sigma = 1.1096 \times 8^{0.5} = 3.1384$

Part B:
$$\mu = 5 - 1.96 \times 1.1096 = 2.8252$$

Exercise 2.3: μ and σ

A statistician estimates confidence intervals from a sample of N observations for the mean (μ) of a normal distribution with a known variance σ^2 .

- The upper bound of the 95% confidence interval is 5.
- The lower bound of the 90% confidence interval is 1.
- A. What is the $z_{\alpha/2}$ for the 95% confidence interval?
- B. What is the $z_{\alpha/2}$ for the 90% confidence interval?
- C. What is σ/\sqrt{N} , the standard deviation of the sample mean?
- D. What is the estimated mean (\overline{x}) ?
- E. If N = 8, what is σ , the standard deviation of the normal distribution?

Part A: For the 95% confidence interval, $z_{\alpha/2} = z_{0.025} = 1.959964$ (table look-up or spreadsheet function).

Part B: For the 90% confidence interval, $z_{\alpha/2} = z_{0.05} = 1.644854$ (table look-up or spreadsheet function).

Part C: We have two equations in two unknowns: \overline{x} and σ/\sqrt{N}

- $(5 \overline{x}) = 1.959964 \times \sigma / \sqrt{N}$
- $(\bar{x} 1) = 1.644854 \times \sigma / \sqrt{N}$

Adding the two equations gives

$$(5-1) = (1.959964 + 1.644854) \times \sigma / \sqrt{N} \Rightarrow$$

$$\sigma / \sqrt{N} = (5-1) / (1.959964 + 1.644854) = 1.109626$$

Part D:
$$\bar{x} = 1 + 1.644854 \times \sigma / \sqrt{N} = 1 + 1.644854 \times 1.109626 = 2.825173$$

Alternatively,
$$\bar{x} = 5 - 1.959964 \times \sigma / \sqrt{N} = 5 - 1.959964 \times 1.109626 = 2.825173$$

Part E: If N = 8,
$$\sigma$$
 = 1.109626 × 8^{0.5} = 3.138496