MS Module 24: Actuarial risk classification - homework assignment
(The attached PDF file has better formatting.)
Homework assignment
The mean values and the number of observations in each cell of a 2×2 classification table are

Means	Column 1	Column 2	Observations	Column 1	Column 2
Row 1	20	12	Row 1	5	4
Row 2	8	3	Row 2	2	3

Illustration: The cell in row 1 column 1 has a mean of 20 from a sample of 5 observations.
An actuary is setting class relativities for insurance pricing using a multiplicative model and a least squares bias function with

- a base rate of 4
- a starting relativity for column 1 of 2.0
- a starting relativity for column 2 of 1.0

We use the following notation:
$\mathrm{M}_{\mathrm{jk}}=$ mean value for the cell with row j and column k
$\mathrm{N}_{\mathrm{jk}}=$ number of observations for the cell with row j and column k
$B=$ base rate
$r_{1}=$ relativity for Row 1
$r_{2}=$ relativity for Row 2
$\mathrm{c}_{1}=$ relativity for Column 1
$\mathrm{c}_{2}=$ relativity for Column 2
A. What are the squared errors in each cell?
B. What is the mean squared error?
C. What is the partial derivative equation for the Row 1 relativity?
D. What is the implied relativity for Row 1 , given the starting relativities by column?
E. What is the partial derivative equation for the Row 2 relativity?
F. What is the implied relativity for Row 2 , given the starting relativities by column?
G. What is the partial derivative equation for the Column 1 relativity?
H. What is the implied relativity for Column 1, given the computed relativities by row?
I. What is the partial derivative equation for the Column 2 relativity?
J. What is the implied relativity for Column 2, given the computed relativities by row?
(The homework assignment has a format similar to that of the practice problem for this module, though the figures in each cell differ.)

