MS Module 22 chisq test phenotype equilibrium practice exam questions

(The attached PDF file has better formatting.)

The groups of phenotypes, R, S, and T, are in equilibrium if for some θ :

- $P(R) = p_1 = \theta^2$
- $P(S) = p_2 = 2\theta(1-\theta)$
- $P(T) = p_3 = (1-\theta)^2$

A sample from a population has the following number of observations in each group:

- Group R: n₁ = 101
- Group S: n₂ = 261
- Group T: n₃ = 138

The null hypothesis H_0 is that the population is in equilibrium for some parameter θ .

Question 22.1: Maximum likelihood estimate for θ

What is the maximum likelihood estimate for θ ?

Answer 22.1:
$$(2 \times 101 + 261) / (2 \times (101 + 261 + 138)) = 0.463$$

(formula derived by maximizing the loglikelihood is $\theta = (2n_1 + n_2) / 2(n_1 + n_2 + n_3)$

Question 22.2: Expected cell counts

What are the expected cell counts?

Answer 22.2: expected cell counts derived by formulas for p_1 , p_2 , and p_3

total count = N = 101 + 261 + 138 = 500

- $n_1 = N \times p_1 = N \times \theta^2 = 500 \times 0.463^2 = 107.1845$
- $n_2 = N \times p_2 = N \times 2\theta(1-\theta) = 500 \times 2 \times 0.463 \times (1 0.463) = 248.6310$
- $n_3 = N \times p_3 = N \times (1-\theta)^2 = 500 \times (1 0.463)^2 = 144.1845$

Question 22.3: χ² statistic

What is the χ^2 statistic to test the null hypothesis that the population is in equilibrium?

Answer 22.3: Σ (observed – expected)² / expected =

$$(101 - 107.1845)^2 / 107.1845 + (261 - 248.6310)^2 / 248.6310 + (138 - 144.1845)^2 / 144.1845 = 1.237$$