MS Module 19 Correlation Fisher transformation practice exam questions
(The attached PDF file has better formatting.)
X and Y are a bivariate normal distribution from which a sample of 20 observations is taken. The sample correlation between X and Y is 0.82 .

We test the null hypothesis $\mathrm{H}_{0}: \rho=0.71$. The alternative hypothesis is $\mathrm{H}_{\mathrm{a}}: \rho_{0}>0.71$.

Question 19.1: Fisher transform of observed correlation ρ
What is the Fisher transform of the observed correlation ρ ?
Answer 19.1: $0.5 \times \ln ((1+0.82) /(1-0.82))=1.1568$
$($ Fisher transform $=1 / 2 \times \ln ((1+\rho) /(1-\rho)))$

Question 19.2: Fisher transform of correlation ρ_{0} assumed in null hypothesis
What is the Fisher transform of the correlation ρ_{0} assumed in the null hypothesis?
Answer 19.2: $0.5 \times \ln ((1+0.71) /(1-0.71))=0.8872$
$($ Fisher transform $=1 / 2 \times \ln ((1+\rho) /(1-\rho)))$

Question 19.3: Variance of Fisher transform
What is the variance of the Fisher transform?
Answer 19.3: $1 /(20-3)=0.058824$
(variance of the Fisher transform = 1/(number of observations -3))

Question 19.4: Standard deviation of Fisher transform
What is the standard deviation of the Fisher transform?
Answer 19.4: $0.058824^{0.5}=0.2425$
(standard deviation $=$ square root of variance)

Question 19.5: z value
What is the z value to test the null hypothesis?
Answer 19.5: $(1.1568-0.8872) / 0.2425=1.1118$
(z value $=\left(\right.$ Fisher transform of sample $\rho-$ Fisher transform of $\left.\rho_{o}\right) /$ standard deviation of Fisher transform $)$

Question 19.6: Confidence interval of the Fisher transform
What is the 90% confidence interval for the true value of the Fisher transform of the correlation?
Answer 19.6: confidence interval $=$ Fisher transform \pm critical z value \times standard deviation of Fisher transform

- lower bound: $1.1568-1.645 \times 0.2425=0.758$
- upper bound: $1.1568+1.645 \times 0.2425=1.556$

Question 19.7: Confidence interval of the correlation
What is the 95% confidence interval for the true value of the correlation?
Answer 19.7: The inverse of the Fisher transform is $\left(e^{2 x}-1\right) /\left(e^{2 x}+1\right)$.

- lower bound: $(\exp (2 \times 0.758)-1) /(\exp (2 \times 0.758)+1)=0.640$
- upper bound: $(\exp (2 \times 1.556)-1) /(\exp (2 \times 1.556)+1)=0.915$

