MS Module 11 Single-Factor ANOVA Tukey's procedure practice exam questions
(The attached PDF file has better formatting.)
Five groups, each with 7 observations, have sample means of

$$
\bar{x}_{1}=3.2, \bar{x}_{2}=3.1, \bar{x}_{3}=3.5, \bar{x}_{4}=3.9, \bar{x}_{5}=3.7
$$

The total sum of squares (SST) is 20, and the treatment sum of squares (SSTr) is 11 .
The groups have normal distributions with equal variances. We test the null hypothesis $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}$ at a 5% confidence level. If we reject the null hypothesis, we test which groups means differ significantly.

Question 11.1: Error sum of squares
What is the error sum of squares SSE?
Answer 11.1: $20-11=9$
(error sum of squares = total sum of squares - treatment sums of squares)

Question 11.2: Treatment mean square

What is the mean square for the groups (treatment mean square)?
Answer 11.2: $11 /(5-1)=2.75$
(treatment mean square $=$ treatment sums of squares $/($ number of groups -1$)$)

Question 11.3: Mean squared error
What is the mean squared error MSE?
Answer 11.3: $9 /(5 \times 7-5)=0.30$
(degrees of freedom for mean squared error $=$ (number of groups -1) \times observations per group; mean squared error = error sum of squares / its degrees of freedom)

Question 11.4: F value
What is the F value to test the null hypothesis?
Answer 11.4: $2.75 / 0.30=9.167$

Question 11.5: Critical F value

What is the critical F value for $\alpha=5 \%$?

Answer 11.5: 2.69
(Table look-up: $\alpha=5 \%$; degrees of freedom $=4,30$)

Question 11.6: Critical Q value
What is the critical Q value for $\alpha=5 \%$?
Answer 11.6: 4.10
(Table look-up: $\alpha=5 \%$; degrees of freedom $=5,30$)

Question 11.7: W (the width of the difference) for Tukey's honestly statistical difference?
What is w (the width of the difference) for Tukey's honestly statistical difference?
Answer 11.7: $4.1 \times(0.30 / 7)^{0.5}=0.849$
(Tukey's $W=$ critical Q value $\times(\text { mean squared error / observations per group) })^{0.5}$)

