Corporate finance, Module 2: "How to Calculate Present Values"

Practice Problems

(The attached PDF file has better formatting.)

Exercise 2.1: Compounding Intervals

What is the value of $\$ 200$ after 5 years invested at (a) 12% per annum, (b) 3% a quarter, and (c) 1% a month?

Solution 2.1:

- Part A: At 12% per annum, value is $\$ 200 \times 1.12^{5}=\$ 352.47$
- Part B: At 3% per quarter, value is $\$ 200 \times 1.03^{4 \times 5}=\$ 361.22$
- Part C: At 1% per month, value is $\$ 200 \times 1.01^{12 \times 5}=\$ 363.34$

Exercise 2.2: Compounding Intervals

What is the equivalent annual effective yield of each of the following?
A. 6% each half year
B. 3% a quarter
C. 1% a month

Solution 2.2:
Part A: $1.06^{2}-1=12.36 \%$
Part B: $1.03^{4}-1=12.55 \%$
Part C: $1.01^{12}-1=12.68 \%$
Question: How important is the compounding interval? And how important is the interest rate?
Answer: If we know the capitalization rate, it is good to be accurate. If the capitalization rate is 12%, we should not use 10% or 11%. For investment analysis, accurate interest rates are essential. Capital markets are efficient, and a slight difference in yield brings large changes in supply and demand.

Illustration: If the market yield is 12% per annum compounded quarterly, a bank that offers a yield of 12% with annual compounding may face much lower demand for its products.

For financial analysis, the increased accuracy pales compared to accurate estimates of future cash flows. A project may bring in $\$ 10$ million in cash next year or $\$ 20$ million. Good estimates of cash flows are the sine qua non of financial analysis. The proper capitalization rate is useful, but it is less important than the proper cash flows.

Exercise 2.3: Doubling Investments

How long will it take $\$ 1$ to double when it is invested at (a) 3%, (b) 5%, (c) 10%, (d) 12%, (e) 15% ? (Use logarithms to compute the answer.)

Solution 2.3:

Part A: With an annual effective interest rate of 3\%:
$\$ 1 \times 1.03^{z}=\$ 2 \Rightarrow \ln 2=z \ln 1.03 \Rightarrow z=\ln 2 / \ln 1.03=23.450$ years
Part B: With an annual effective interest rate of 5% :
$\$ 1 \times 1.05^{z}=\$ 2 \Rightarrow \ln 2=z \ln 1.05 \Rightarrow z=\ln 2 / \ln 1.05=14.207$ years
Part C: With an annual effective interest rate of 10% :
$\$ 1 \times 1.10^{z}=\$ 2 \Rightarrow \ln 2=z \ln 1.10 \Rightarrow z=\ln 2 / \ln 1.10=7.273$ years
Part D: With an annual effective interest rate of 10\%:
$\$ 1 \times 1.12^{z}=\$ 2 \Rightarrow \ln 2=z \ln 1.12 \Rightarrow z=\ln 2 / \ln 1.12=6.116$ years
Part E: With an annual effective interest rate of 15% :
$\$ 1 \times 1.15^{z}=\$ 2 \Rightarrow \ln 2=z \ln 1.15 \Rightarrow z=\ln 2 / \ln 1.15=4.959$ years

Exercise 2.4: Discount Factors and Annuity Formula

An investment of $\$ 1,000$ will produce income of $\$ 270$ a year for 5 years. Calculate its NPV at a discount rate of 10% by the following methods:
A. The conventional NPV method, using separate discount factors
B. Using the annuity formula

Solution 2.4:

Part A: Discount factors: The present value of $\$ 270$ per annum for 5 years at 10% is
$\$ 270 / 1.10^{1}+\$ 270 / 1.10^{2}+\$ 270 / 1.10^{3}+\$ 270 / 1.10^{4}+\$ 270 / 1.10^{5}=\$ 1,023.51$
The net present value of the project is $\$ 1,023.51-\$ 1,000=\$ 23.51$
Part B: Annuity Formula: $\$ 270 \times\left\{\frac{1}{r}-\frac{1}{r \times(1+r)^{t}}\right\}=\$ 1,023.51$

The net present value of the project is $\$ 1,023.51-\$ 1,000=\$ 23.51$

Exercise 2.5: Three Year Investment

An investment of $\$ 2,000$ in year 0 produces cash flows of $\$ 700$ in year $1, \$ 700$ in year 2, and $\$ 900$ in year 3 . Calculate its net present value at (a) 0%, (b) 5%, (c) 10%, (d) 15%.

Solution 2.5:

Part A: At 0\%, $-\$ 2,000+\$ 700+\$ 700+\$ 900=\$ 300$
Part B: At 5\%, $-\$ 2,000+\$ 700 / 1.05^{1}+\$ 700 / 1.05^{2}+\$ 900 / 1.05^{3}=\$ 79.04$
Part C: At $10 \%,-\$ 2,000+\$ 700 / 1.10^{1}+\$ 700 / 1.10^{2}+\$ 900 / 1.10^{3}=(\$ 108.94)$
Part D: At $15 \%,-\$ 2,000+\$ 700 / 1.15^{1}+\$ 700 / 1.15^{2}+\$ 900 / 1.15^{3}=(\$ 270.24)$

Exercise 2.6: Savings and Consumption

An actuarial candidate has savings of $\$ 1,200$, and she expects to save an additional $\$ 600$ next year. She will use the savings to pay exam fees of $\$ 800$ in 2 years' time and $\$ 900$ in 3 years' time. How much can she afford to spend now on textbooks if her savings earn (a) 5%, (b) 7%, (c) 9% ?

Solution 2.6:

Part A: At 5\%, \$1,200 + \$600 / 1.05 ${ }^{1}-\$ 800 / 1.05^{2}-\$ 900 / 1.05^{3}=\$ 268.35$
Part B: At 7\%, \$1,200 + \$600 / 1.07 ${ }^{1}-\$ 800 / 1.07^{2}-\$ 900 / 1.07^{3}=\$ 327.33$
Part C: At 9\%, \$1,200 + \$600/1.09 ${ }^{1}-\$ 800 / 1.09^{2}-\$ 900 / 1.09^{3}=\$ 382.15$

Exercise 2.7: Estate Value

An actuary will receive $\$ 40,000$ from his uncle's estate in 1 year and annually thereafter in perpetuity. What is the value of this perpetuity at an interest rate of (a) 8\% (b) 10\%?

Solution 2.7:

Part A: At 8\%, \$40,000 / $0.08=\$ 500,000$
Part B: At 10\%, \$40,000 / $0.10=\$ 400,000$

Exercise 2.8: Delayed Perpetuity

How much is the previous perpetuity worth if it begins in 5 years time instead of in $1 ?$
Solution 2.8: If it begins in 5 years time instead of 1 year, it begins 4 years later than in the previous problem:
Part A: At $8 \%, \$ 40,000 /\left(0.08 \times 1.08^{4}\right)=\$ 500,000 / 1.08^{4}=\$ 367,514.93$
Part B: At $8 \%, \$ 40,000 /\left(0.10 \times 1.10^{4}\right)=\$ 400,000 / 1.08^{4}=\$ 273,205.38$

Exercise 2.9: Increasing Perpetuity

If the uncle's will provides $\$ 40,000$ in 1 year, increased annually by 6%. What is the present value of this growing stream of income at an interest rate of (a) 8% (b) 10% ?

Solution 2.9:

Part A: At 8\%, \$40,000 / (0.08-0.06) = \$2,000,000
Part B: At 10, $\$ 40,000 /(0.10-0.06)=\$ 1,000,000$
Question: These problems are not hard.
Answer: The first two modules are background; if you have dealt with these topics, the first five modules are not difficult.

Question 2.10: Yield to Maturity
All but which of the following would likely increase the yield to maturity on a corporate bond?
A. An increase in the firm's business risk
B. An increase in the firm's leverage ratio
C. An increase in the risk-free rate
D. An increase in the firm's profitability ratio.
E. All of A, B, C, and D are true.

Answer 2.10: D
Statement A and B : Riskier firms have higher debt rates.
Statement C: The yield is the risk-free rate plus the firm's risk premium.
Statement D: More profitable firms pay lower debt interest rates. Less profitable firms have higher probabilities of bankruptcy, so they pay higher debt interest rates.

