Corporate finance, Module 2: How to Calculate Present Values
(Practice problems covering the fundamental concepts in the textbook chapter. Review these for the homework assignments; the final exam questions will be modeled on these practice problems.)

Exercise 2.1: Compounding Intervals
What is the value of $\$ 2,000$ after 5 years invested at
A. 12% per annum
B. 1% a month?

Solution 2.1:

- Part A: At 12% per annum, value is $\$ 2,000 \times 1.12^{5}=\$ 3,524.68$
- Part B: At 1% per month, value is $\$ 2,000 \times 1.01^{12 \times 5}=\$ 3,633.39$

Exercise 2.2: Doubling Investments

How long will it take a dollar to double if it is invested at
A. 3%
B. 10%
C. 15%

Use logarithms to compute the answer: $\$ 2=\$ 1 \times(1+r)^{t} \Rightarrow \ln 2=\mathrm{t} \times \ln (1+\mathrm{r})$.
Solution 2.2:
Part A: With an annual effective interest rate of 3% :
$\$ 1 \times 1.03^{2}=\$ 2 \Rightarrow$
$\ln 2=\mathrm{z} \ln 1.03 \Rightarrow$
$z=\ln 2 / \ln 1.03=23.450$ years
Part B: With an annual effective interest rate of 10% :
$\$ 1 \times 1.10^{2}=\$ 2 \Rightarrow$
$\ln 2=z \ln 1.10 \Rightarrow$
$z=\ln 2 / \ln 1.10=7.273$ years
Part C: With an annual effective interest rate of 15% :
$\$ 1 \times 1.15^{2}=\$ 2 \Rightarrow$
$\ln 2=z \ln 1.15 \Rightarrow$
$z=\ln 2 / \ln 1.15=4.959$ years

Exercise 2.3:

What is the net present value of an investment of $\$ 1,000$ that produces income of $\$ 270$ a year for 5 years at a discount rate of 10% per annum? Show the solution with discount factors and with the annuity formula.

Solution 2.3:

Discount factors: The present value of $\$ 270$ per annum for 5 years at a 10% rate is

$$
\$ 270 / 1.10^{1}+\$ 270 / 1.10^{2}+\$ 270 / 1.10^{3}+\$ 270 / 1.10^{4}+\$ 270 / 1.10^{5}=\$ 1,023.51
$$

The net present value of the project is $\$ 1,023.51-\$ 1,000=\$ 23.51$
Annuity Formula: $\$ 270 \times\left\{1 / r-1 /\left[r \times(1+r)^{t}\right]\right\}=\$ 1,023.51$

$$
\$ 270 \times\left\{\frac{1}{r}-\frac{1}{r \times(1+r)^{t}}\right\}=\$ 1,023.51
$$

The net present value of the project is $\$ 1,023.51-\$ 1,000=\$ 23.51$

Exercise 2.4:

What is the net present value of an investment costing $\$ 2,000$ that produces cash flows of $\$ 700$ in year 1 , $\$ 700$ in year 2, and $\$ 900$ in year 3 if the discount rate is
A. 5%
B. 15%

Solution 2.4:
Part A: At $5 \%,-\$ 2,000+\$ 700 / 1.05^{1}+\$ 700 / 1.05^{2}+\$ 900 / 1.05^{3}=\$ 79.04$
Part B: At $5 \%,-\$ 2,000+\$ 700 / 1.15^{1}+\$ 700 / 1.15^{2}+\$ 900 / 1.10^{3}=(\$ 270.24)$

Exercise 2.5:

A worker now has $\$ 12,000$ and expect to save an additional $\$ 6,000$ next year and then pay $\$ 8,000$ in 2 years' time and $\$ 9,000$ in 3 years' time for a new car. How much of the present savings can the worker afford to spend now on a dining room set if savings earn
A. 5%
B. 9%

Solution 2.5:
Part A: At $5 \%, \$ 12,000+\$ 6,000 / 1.05^{1}-\$ 8,000 / 1.05^{2}-\$ 9,000 / 1.05^{3}=\$ 2,683.51$
Part B: At 9\%, \$12,000 + \$6,000 / 1.09 ${ }^{1}-\$ 8,000 / 1.09^{2}-\$ 9,000 / 1.09^{3}=\$ 3,821.50$

Exercise 2.6:

A lottery winner receives $\$ 400$ in 1 year's time and annually thereafter in perpetuity. What is the value of this perpetuity at an interest rate of 8% ?

Solution 2.6:
At 8\%, \$400 / $0.08=\$ 5,000.00$

Exercise 2.7:

How much is the previous perpetuity worth if it begins in 5 years instead of in 1 year?

Solution 2.7: If it begins in 5 years time instead of 1 year, it begins 4 years later than in the previous problem:
At $8 \%, \$ 400 /\left(0.08 \times 1.08^{4}\right)=\$ 5,000.00 / 1.08^{4}=\$ 3,675.15$

Exercise 2.8:

If the lottery winner receives $\$ 400$ in 1 year's time and this amount increases 6% per annum, what is the present value of this growing income stream at an 8% interest rate?

Solution 2.8:
At $8 \%, \$ 400 /(0.08-0.06)=\$ 20,000.00$

