Corporate Finance, Module 6, "Risk, Return, and the Opportunity Cost of Capital"

Geometric Average vs Arithmetic Average

(The attached PDF file has better formatting.)

Illustration: Geometric vs Arithmetic Average
An investment returns either 0% or 20% each year, with a 50% probability of each. What is the expected annual return?

Question: Consider the expected return over two years. The investment may earn 0\% the first year and 20\% the next year, or 20% the first year and 0% the next year. Either way, the two year return is 20%, which is equivalent to $1.20^{1 / 2}-1=9.54 \%$ per annum. We use the geometric average, not the arithmetic average.

Answer: You are correct that 20\% over two years is equivalent to 9.54% over one year. But the expected return over two years is not 20%. The investment has four possible returns, not two:

	Returns			
Scenario	Year 1	Year 2	Two Year	Probability
1	0%	0%	0%	25%
2	0%	20%	20%	25%
3	20%	0%	20%	25%
4	20%	20%	44%	25%
Total			84%	100%

The expected return is $84 \% / 4=21 \%$. The expected annual return is $1.21^{1 / 2}-1=10 \%$. This is the arithmetic average of 0% and 20%.

