(The attached PDF file has better formatting.)

Exercise 1.2: Abnormal Returns

An analysis of 72 monthly rates of return on a company's common stock indicates a beta of 1.75 and an alpha of 0.005 per month. One month later, the market is up by 1.0% and the stock is up by 2.0%. What is the abnormal rate of return?

Solution 1.2: The expected return is $0.005+1.75 \times 1 \%=2.25 \%$. Since the stock rose by 2.0%, the abnormal rate of return is $2.0 \%-2.25 \%=-0.25 \%$.

Exercise 1.3: Abnormal Returns

An analysis of the stock of the ABC Company indicates that the stock price, on average, decreases 0.1% per month when the market index is unchanged, and increases 1.5% for each 1% increase in the market index. One month later, the market index is up 7\% and ABC's stock is up 9\%. What is the abnormal rate of return for the stock of ABC Company?

Solution 1.3: The expected return for ABC stock is $-0.1 \%+(1.5 \% / 1.0 \%) \times 7 \%=10.40 \%$. The actual return is 9.0%, so the abnormal return is $9.0 \%-10.4 \%=-1.4 \%$.

Exercise 1.4: Abnormal Returns

Company X's expected return is equal to 1.25 times the expected market return. Yesterday, the market increased by 1%, but Company X's stock decreased from $\$ 100$ to $\$ 80$. What is the abnormal return?

Solution 1.4: The expected return is $1.25 \times 1 \%=1.25 \%$. The actual return is $-(\$ 100-\$ 80) / \$ 100=-20 \%$. The abnormal return is $-20 \%-1.25 \%=-21.25 \%$.

Exercise 1.5: Abnormal Returns

The stock of ABC Company currently trades at $\$ 100$ per share. The stock price, on average, increases 0.5% per month when the market is unchanged and rises an additional 1.1% for each 1% increase in the market index. In a given month, the market index increased 3.5%, and the stock of ABC Company increased 4%. What was the additional price change of the stock of ABC Company?

Solution 1.5: The expected return is $0.5 \%+(1.1 \% / 1.0 \%) \times 3.5 \%=4.35 \%$. The actual return is 4.0%. The abnormal return is $4.0 \%-4.35 \%=-0.35 \%$.

