Black-Scholes Practice Problems

(The attached PDF file has better formatting.)
\{This posting contains more information than is needed for the corporate finance on-line course.\}

Exercise 23.1: Black-Scholes Pricing

A stocks price variance rate, or σ^{2}, is 25%. (Brealey and Myers sometimes express this as the annual variance of a company's continuously compounded stock price.) The nominal risk-free rate payable quarterly is currently 8%. (8% per annum with quarterly compounding is 2% each quarter.) The company's stock now trades at $\$ 100$. Three-month European calls and puts are trading with a strike price of $\$ 108$.
A. What are the values of the five input parameters to the Black-Scholes model?
B. What is the value of $\ln (\mathrm{S} / \mathrm{PV}(\mathrm{X}))$: the logarithm of the ratio of the current stock price to the present value of the exercise price?
C. What are the values of d_{1} and d_{2} ?
D. What are the values of $N\left(d_{1}\right), N\left(-d_{1}\right), N\left(d_{2}\right)$, and $N\left(-d_{2}\right)$?
E. What is the value of the European call option?
F. What is the value of the European put option?
G. Verify that the put call parity relation holds.

Solution 23.1:
Part A: We determine the Black-Scholes parameters:

- $\sigma^{2}=25 \%$ per year, so $\sigma=50 \%$.
- $t=0.25$
- $r=8 \%$ payable quarterly or 2% per quarter.
- $S=\$ 100$
- $X=\$ 108$ and $\mathrm{PV}(\mathrm{X})=\$ 108 / 1.02=\$ 105.88$

Part B: $\ln (S / P V(X))=\ln (\$ 100 / \$ 105.88)=\ln (0.944)=-0.057$
Part C: The values of d_{1} and d_{2} are

$$
\begin{aligned}
& d_{1}=\frac{\ln (S / P V(X))+\left(\sigma^{2} / 2\right) t}{\sigma \sqrt{t}} \\
& d_{2}=\frac{\ln (S / P V(X))-\left(\sigma^{2} / 2\right) t}{\sigma \sqrt{t}}=d_{1}-\sigma \sqrt{t}
\end{aligned}
$$

$$
\begin{aligned}
& d_{1}=(-0.057+1 / 2 \times 0.25 \times 0.25] /(0.5 \times 0.5)=-0.104 \\
& d_{2}=-0.104-0.5 \times 0.5=-0.354
\end{aligned}
$$

Part D: $N\left(d_{1}\right)=N(-0.104)=0.459 ; N\left(-d_{1}\right)=N(0.104)=0.541$

$$
N\left(d_{2}\right)=N(-0.354)=0.362 ; N\left(-d_{2}\right)=N(0.354)=0.638
$$

Part E: The value of the call option is $\$ 100 \times 0.459-\$ 105.88 \times 0.362=\$ 7.57$
Part F: The value of the put option is $-\$ 100 \times 0.541+\$ 105.88 \times 0.638=\$ 13.45$
Part G: $\$ 7.57+\$ 105.88=\$ 13.45+\$ 100=\$ 113.45$

Exercise 23.2: Black-Scholes Pricing

- The standard deviation of the continuously compounded annual rate of return on the stock is 0.4.
- The stock price is now $\$ 100$ and pays no dividends.
- The time to maturity of the option is 3 months (0.25 years).
- In (current share price / present value of the exercise price) $=-0.08$, at the risk-free rate.
A. What is the present value of the exercise price? (Derive this value from $\ln (\mathrm{S} / \mathrm{PV}(\mathrm{X}))=-0.08$.) This is the one Black-Scholes parameter that we are not explicitly told.
B. What are the values of d_{1} and d_{2} ?
C. What are the values of $N\left(d_{1}\right), N\left(-d_{1}\right), N\left(d_{2}\right)$, and $N\left(-d_{2}\right)$?
D. What is the value of the European call option?
E. What is the value of the European put option?
F. Verify that the put call parity relation holds.

Solution 23.2:

Part A: We determine the values of the Black-Scholes parameters:

- $S=\$ 100$
- $t=0.25$
- $\sigma=0.4$
- $\quad \ln (\mathrm{S} / \mathrm{PV}(\mathrm{X}))=-0.08 \Rightarrow \mathrm{PV}(\mathrm{X})=\mathrm{S} / \mathrm{e}^{-0.08}=\mathrm{S} \times \mathrm{e}^{0.08}=\$ 108.33$

Part B: The values of d_{1} and d_{2} are

$$
\begin{aligned}
& d_{1}=\frac{\ln (S / P V(X))+\left(\sigma^{2} / 2\right) t}{\sigma \sqrt{t}} \\
& d_{2}=\frac{\ln (S / P V(X))-\left(\sigma^{2} / 2\right) t}{\sigma \sqrt{t}}=d_{1}-\sigma \sqrt{t}
\end{aligned}
$$

$d_{1}=(-0.08+1 / 2 \times 0.16 \times 0.25] /(0.4 \times 0.5)=-0.300$
$\mathrm{d}_{2}=-0.300-0.4 \times 0.5=-0.500$
Part C: The values are
$\mathrm{N}\left(\mathrm{d}_{1}\right)=\mathrm{N}(-0.300)=0.382 ; \mathrm{N}\left(-\mathrm{d}_{1}\right)=\mathrm{N}(0.300)=0.618$
$N\left(d_{2}\right)=N(-0.500)=0.309 ; N\left(-d_{2}\right)=N(0.500)=0.691$
Part D: The value of the call option is $\$ 100 \times 0.382-\$ 108.33 \times 0.309=\$ 4.73$
Part E: The value of the put option is $-\$ 100 \times 0.618+\$ 108.33 \times 0.691=\$ 13.06$
Part F: $\$ 4.73+\$ 108.33=\$ 113.06=\$ 13.06+\$ 100$

