BM Ch9 optimal portfolio practice exam question

The market has only two risky securities, with expected returns, standard deviations, and market values of

	Expected Return	Standard Deviation	Market Value
Stock Y	9.19%	30.40%	45.59 million
Stock Z	13.80%	67.20%	18.97 million

The correlation of stocks Y and Z is 54.62%. Risk-free bonds yield 4.74%. An investor who can borrow or lend at the risk-free rate forms an optimal portfolio of risk-free bonds and risky securities.

Question 8.1: Expected return of market portfolio of risky assets
What is the expected return of the market portfolio of risky securities?
Answer 8.1: The expected return of the market portfolio of risky securities is a weighted average by market value:

$$
((9.19 \%) \times 45.59+(13.80 \%) \times 18.97) /(45.59+18.97)=10.54 \%
$$

Question 8.2: Variance of market portfolio of risky assets
What is the variance of the market portfolio of risky securities?
Answer 8.2: The variance of the market portfolio of risky securities is

$$
\left((30.40 \%)^{2} \times 45.59^{2}+(67.20 \%)^{2} \times 18.97^{2}+2 \times(54.62 \%) \times(30.40 \%) \times 45.59 \times(67.20 \%) \times 18.97\right) /(45.59+18.97)^{2}=13.14 \%
$$

Question 8.3: Standard deviation of market portfolio of risky assets
What is the standard deviation of the market portfolio of risky securities?

Answer 8.3: The standard deviation of the market portfolio of risky securities is the square root of the variance

$$
(13.14 \%)^{0.5}=36.25 \%
$$

Question 8.4: Composition of optimal portfolio
What is the composition of the optimal portfolio with a standard deviation of 42.7% ?
Answer 8.4: The optimal portfolio is a combination of risk-free bonds with a standard deviation of zero and the market portfolio of risky securities that have a standard deviation of 36.25%. For a standard deviation of 42.7%, we solve

$$
\begin{aligned}
& 36.25 \% \times Z+0 \times(1-Z)=42.7 \% \\
\Rightarrow & Z=(42.7 \%) /(36.25 \%)=117.79 \% \\
\Rightarrow & (1-Z)=1-117.79 \%=-17.79 \%
\end{aligned}
$$

For an optimal portfolio with a standard deviation of 42.7% and a market value of 100, the investor sells 17.79 of risk-free bonds with a standard deviation of zero and buys 117.79 of the market portfolio of risky securities with a standard deviation of 36.25%. This investor wants a portfolio even riskier than the market portfolio.

Question 8.5: Expected return of optimal portfolio
What is the expected return on an optimal portfolio with a standard deviation of 42.7% ?
The expected return on the optimal portfolio with a standard deviation of 42.7% is a weighted average of its two parts:

$$
117.79 \% \times 10.54 \%+-17.79 \% \times 4.74 \%=11.57 \%
$$

Question 8.6: Composition of optimal portfolio
What is the composition of the optimal portfolio with an expected return of 6.24% ?
Answer 8.6: The optimal portfolio is a combination of risk-free bonds with an expected return of 4.74\% and the market portfolio of risky securities that have an expected return of 10.54%. For an expected return of 6.24%, we solve

$$
\begin{gathered}
10.54 \% \times Z+4.74 \% \times(1-Z)=6.24 \% \\
\Rightarrow Z=(6.24 \%-4.74 \%) /(10.54 \%-4.74 \%)=25.86 \% \\
\Rightarrow(1-Z)=1-25.86 \%=74.14 \%
\end{gathered}
$$

For an optimal portfolio with an expected return of 6.24% and a market value of 100 , the investor

- buys 25.86 of the market portfolio of risky securities with an expected return of 10.54% and
- buys 74.14 of risk-free bonds with an expected return of 4.74%.

Question 8.7: Standard deviation of optimal portfolio
What is the standard deviation on an optimal portfolio with an expected return of 6.24% ?

Answer 8.7: The risk-free bonds have a standard deviation of zero and are not correlated with the market portfolio of risky securities, which have a standard deviation of 36.25%. This optimal portfolio has a standard deviation of $25.86 \% \times 36.25 \%=9.37 \%$.

