MS Module 2: Confidence intervals - practice problems
(The attached PDF file has better formatting.)

Exercise 2.1: Confidence interval

A sample from a normal distribution has summary statistics:
! $n=50$
! $\quad \sum x_{i}=991$
! $\quad \sum x_{i}^{2}=20,635$
A. What is the estimated μ, the mean of the normal distribution?
B. What is the estimated σ, the standard deviation of the normal distribution?
C. What is the 95% confidence interval for μ ?

Part A: The estimated $\mu=991 / 50=19.82$.
Part B: The estimated $\sigma=\left(\left(20,635-991^{2} / 50\right) /(50-1)\right)^{0.5}=4.5026$
Part C: The 95\% confidence interval is
! Lower bound: $19.82-1.96 \times 4.5025 / 50^{0.5}=18.5720$
! Upper bound: $19.82+1.96 \times 4.5025 / 50^{0.5}=21.0680$

Exercise 2.2: Confidence intervals

A statistician forms confidence intervals for the mean of a normally distributed population from a sample of 80 observations.
! The upper bound of the 95% confidence interval is 5 .
! The lower bound of the 90% confidence interval is 1 .
A. What is the estimated standard deviation of the population?
B. What is the estimated mean of the population?

Part A: Let μ be the estimated mean and σ be the estimated standard deviation.
! The ($1-z$) confidence interval for the mean is $\left(\mu-z_{\alpha / 2} \times \sigma, \mu+z_{\alpha / 2} \times \sigma\right.$).
! The $z_{\alpha / 2}$ values are 1.96 for a 95% confidence interval and 1.645 for a 90% confidence interval.
We have two equations in two unknowns:
$\mu+1.96 \times \sigma / \sqrt{n}=5$
$\mu-1.645 \times \sigma / \sqrt{n}=1$
The first equation minus the second equation gives
$\sigma / \sqrt{n}=(5-1) /(1.96+1.645)=1.1096$, so $\sigma=1.1096 \times 80^{0.5}=9.9246$
Part B: $\mu=5-1.96 \times 1.1096=2.8252$

Exercise 2.3: μ and σ

A statistician estimates confidence intervals from a sample of N observations for the mean (μ) of a normal distribution with a known variance σ^{2}.
! The upper bound of the 95% confidence interval is 5 .
! The lower bound of the 90% confidence interval is 1 .
A. What is the $z_{\alpha / 2}$ for the 95% confidence interval?
B. What is the $z_{\alpha / 2}$ for the 90% confidence interval?
C. What is $\sigma / \sqrt{ } \mathrm{N}$, the standard deviation of the sample mean?
D. What is the estimated mean $(\overline{\mathrm{x}})$?
E. If $\mathrm{N}=8$, what is σ, the standard deviation of the normal distribution?

Part A: For the 95% confidence interval, $z_{\alpha / 2}=z_{0.025}=1.959964$ (table look-up or spreadsheet function).
Part B: For the 90% confidence interval, $z_{\alpha / 2}=z_{0.05}=1.644854$ (table look-up or spreadsheet function).
Part C : We have two equations in two unknowns: $\overline{\mathrm{x}}$ and σ / \sqrt{N}
! $\quad(5-\bar{x})=1.959964 \times \sigma / \sqrt{N}$
! $(\bar{x}-1)=1.644854 \times \sigma / \sqrt{N}$
Adding the two equations gives
$(5-1)=(1.959964+1.644854) \times \sigma / \sqrt{N} \Rightarrow$
$\sigma / \sqrt{N}=(5-1) /(1.959964+1.644854)=1.109626$
Part D: $\overline{\mathrm{x}}=1+1.644854 \times \sigma / \sqrt{\mathrm{N}}=1+1.644854 \times 1.109626=2.825173$
Alternatively, $\bar{x}=5-1.959964 \times \sigma / \sqrt{N}=5-1.959964 \times 1.109626=2.825173$
Part E: If $\mathrm{N}=8, \sigma=1.109626 \times 8^{0.5}=3.138496$

