
MS Modules 18 and 19 – units of measurement practice problems

(The attached PDF file has better formatting.)

Variables and parameters have two parts: an amount and a unit of measurement. Regression parameters and
the least squares estimates depend on the units of the explanatory and response variables. 

Illustration: Suppose Yj = $0 + $1 X1j + $2 X2j + ,j 

The items in the sum – Yj, $0, $1 × X1j, $2 × X2j, and ,j – are in the same units, so

! $0 (and its estimate β̂0) has the same units as Y
! , (the error term) and the regression residuals have the same units as Y
! $1 × X1 has the same units as Y, so $1 (and its estimate β̂ 0) has the same units as Y/X1

A change in the units of a parameter causes an offsetting change in the magnitude of the parameter.

Illustration: Suppose an explanatory variable is X = 2,500 meters and $1 = 0.03. 

If the units of the explanatory variable change to kilometers (1 kilometer = 1,000 meters) and the units of the
response variable do not change, then

! the amount of X changes to 2.5 (divide by 1,000)
! $1 changes to 30 (multiply by 1,000) so that $ × X does not change

β̂ 1, the ordinary least squares estimator of $1, changes the same way as $1. If β̂ 1 = 0.03 when X is in meters,
it is 30 when X is in kilometers.

The square of a random variable is in units-squared of the random variable. 

Illustration: If Y is measured in meters, SST, SSE, and SSR, are in meters-squared. If the units of Y change
from meters to kilometers, the values of Y are divided by 1,000, and the value of SST, SSE, and SSR are
divided by 1,000² = 1,000,000.

Ratios are in units of the numerator divided by units of the denominator. 

Illustration: The R2 is the regression sum of squares (SSR) divided by the total sum of squares (SST). SSR
and SST are measured in the same units, so the R2 is unit-less. 

The number of observations (N) and the number of parameters (k) in the regression analysis are unit-less.
If the explanatory variable changes from meters to kilometers, the number of observations and the number
of parameters do not change. The adjusted R2 = 1 – (1 – R2) × (N – 1) / (N – k – 1) , so the adjusted R2 is also
unit-less.

Standard deviations and standard errors are in the same units as the random variable they apply to. 

Illustration: The standard error of β̂1 is in the same units as ̂β 1; the standard error of β̂0 is in the same units as 
β̂ 0; the standard error of the error term , is in the same units as , (which is the same units as the response
variable Y and the residual e).

Many statistical measures are unit-less: they do not depend on the units of measurement of the explanatory
or response variables.

Standardized values, such as standardized residuals, are the values divided by their standard errors, so they
are unit-less.



Illustration: If the response variable changes from dollars to euros or from degrees Fahrenheit to degrees
Centigrade, the standardized residuals do not change. 

The t value for a least squares estimate is a standardized value, so it is unit-less. The t value measures the
significance of the regression equation: changing the units of measurement does not change the significance. 

Illustration: The t value is the estimated parameter divided by its standard error. A random variable and its
standard error have the same units, so the t value is unit-less.

p values are measures of significance, so they are unit-less. They measure the percentage of scenarios with
outcomes at least as extreme as the observed data (assuming random fluctuations and a null hypothesis).
The p values are independent of the units of measurement of explanatory and response variables.

Know how ordinary least squares estimators, their standard errors, t-values, and p-values depend on the units
of measurement and displacement from the origin. The principles are

! Multiplying the explanatory variable by k multiplies its $j by 1/k. 
! Multiplying the response variable by k multiplies all the $’s by k.
! Displacements of explanatory variables and the response variable from the origin changes only $0, not

the slope coefficients. 

Intuition: Knowing the units of the regression coefficients helps determine how a change in the units affects
the coefficients. 

! $0 is in units of the response variable, not in units of the explanatory variables.
! $1 is in units of response variable / explanatory variable.

Illustration: Suppose claim frequency = $0 + $1 × kilometers driven.

! $0 is in units of claim frequency.
! $1 is in units of claim frequency / kilometers driven
 
If we write the regression equation as claim frequency = $0 + ($1/1,000) × meters driven.

!  $0 is in units of claim frequency.
!  $1 is in units of claim frequency / kilometers driven A $1 / 1,000 is in units of claim frequency / meters.
 
Intuition: $1 depends on the deviations of the values from their mean. A constant displacement of all the values
doesn’t affect the deviations. But a constant displacement of k raises the response variable Y by k × $1. $0 has
the same displacement as the response variable, so it also rises by k × $1.

Standardized coefficients and t-values are unit-less.

Standardized coefficients are $ × Fx / Fy. 

!  $ is in units of Y / X.
!  Fx is in units of X.
!  Fy. Is in units of Y.

A The standardized coefficient is unit-less.

Measures of significance are not affected by units of measurement. 

! The t-value is the ordinary least squares estimator divided by its standard deviation.  
! The estimator and its standard deviation have the same units, so the t-value is unit-less.



The correlation between two random variables is unrelated to units of measurement, so the R2 statistic is also
unit-less.



Exercise 18.1: Sample size and expected values 

A statistician regresses the response variable (Yj) on the explanatory variable (Xj), Yj = $0 + $1Xj + ,j, with N
= 5 observations, gives ̂β 1 (the least squares estimate for $1) = 1. The null hypothesis is $1 = 0. The X values
here are randomly sampled from a population (e.g., X and Y are a bivariate normal distribution). 

As N increases, what happens to the expected values of the following? 

A. R2 
B. The adjusted R2 
C. FX, the standard deviation of X, or /(Sxx/(n-1))
D. F(β̂ 1), the standard error of β̂ 1

E. The t value for the null hypothesis H0: $1 = 0
F. The p value for the significance of the t test above
G. The width of the 95% confidence interval for $1 

Part A: As N increases, the expected value of R2 decreases. The change in R2 is noticeable for small values
of N. For larger values of N, the change in the expected value of R2 is small.

Part B: The adjusted R2 is adjusted for degrees of freedom. A change in the number of observations changes
the degrees of freedom, so the formula for the adjusted R2 has an offsetting change in (N – 1) / (N – k) and
the expected value of the adjusted R2 does not change. 

Intuition: With N = 2, the correlation of the explanatory variable and the response variable is +1 or –1, and the
R2 of the regression line is 100%, even if the two variables are independent. With N = 3 and a independent
variables, the correlation is ±1 just by random fluctuations in one third of scenarios, and the expected value
of R2 is 50%.

Question: How do we derive the expected value of R2?

Answer: If the explanatory variable and the response variable are independent, the expected value of the
adjusted R2 is zero. Using the formula

Adjusted R2 = 1 – (1 – R2) × (N – 1) / (N – k – 1) 

we derive

R2 = 1 – (1 – adjusted R2) × (N – k – 1) / (N – 1) 

For N = 3 and k = 1, we have

R2 = 1 – (1 – 0) × (3 – 1 – 1) / (3 – 1) = ½ = 50%.

Part C: The population variance and standard deviation of X are not affected by the number of observations
in the regression analysis. The sample variance and standard deviation of X may be higher or lower than the
population variance and standard deviation, but the difference is random and has an expected value of zero. 

Question: Why does the practice problem say that the X values are randomly sampled from a population? Isn’t
this always true?

Answer: The dependent variable Y is a random variable with mean :j (= the fitted value at X = xj) and variance
F2 (equal at all points). The independent variable X is not necessarily a random variable. It may be chosen for
the experiment, such as the first N positive integers. (The variance of the first N integers depends on N.)



Question: Does Sxx, the sum of squared deviations of the X values, depend on the number of observations
if the X values are a random sample from a population? 

Answer: The variance is the sum of squared deviations divided by N-1. The variance is independent of N, so
the expected value of the sum of squared deviations is proportional to N-1.

Part D: The variance of β̂ 1 is the estimated value of F2 divided by the sum of squared deviations of X. Since
the estimated value of F2 is independent of N and the sum of squared deviations of X is proportional to N-1,
the variance of β̂ 1 is proportional to 1/(N-1), and the standard error of β̂ 1 is proportional to 1//(N-1). As N
increases, the expected value of the standard error of β̂ 1 decreases. 

Part E: The t value for β̂ 1 is the value of β̂ 1 divided by its standard error. 

! The expected value of β̂ 1 does not change with the number of observations. 
! The expected value of the standard error of β̂1 is proportional to 1//(N-1).
! A The expected value of the t value for β̂ 1 is proportional to /(N-1).

Part F: The p value for the significance of β̂ 1 decreases as the t value for β̂ 1 increases. This p value depends
on the cumulative distribution function of the t distribution, which does not have a simple algebraic form.

Question: Do the degrees of freedom also affect the change in the p value?

Answer: More observations give a more compact (less heavy tailed) t distribution and a lower p value.

! As the t value increases, the p value decreases, even if N does not change. 
! As the N increases, the p value decreases, even if the t value does not change. 

Part G: The width of the 95% confidence interval for β̂ 1 is 2 × t5%/2, n-2 × F(β̂1). More observations increase the
degrees of freedom and reduce the standard deviation of β̂ 1 and reduce the width of the confidence interval. 



Exercise 18.2: Miles Driven and Annual Claim Costs

A U.S. actuary uses least squares regression with N pairs of observations (Xi, Yi) to estimate average annual
claims cost in dollars per average miles driven per day, giving Y= 50 + 40X + ,.  For instance, a policyholder
who drives an average of 25 miles a day has average claim costs of 50 + 40 × 25 = 1,050 dollars a year. The
null hypothesis is H0: $1 = 0.

A European actuary uses the relation to estimate annual claims costs in Euros based on kilometers driven
a day. For this problem, assume €1.00 = $1.25 and 1 kilometer = e mile (five eighths of a mile).

A. What is the percentage change in the intercept parameter $0?
B. What is the percentage change in the slope coefficient $1?
C. What is the percentage change in the variance F2?
D. What is the percentage change in the standard error of β̂ 1?
E. What is the percentage change in the t value to test the null hypothesis? 
F. What is the percentage change in the F value to test the null hypothesis? 
G. What is the percentage change in the width of the 95% confidence interval for $?
H. What is the percentage change in the p value for the test of the null hypothesis? 
I. What is the percentage change in the total sum of squares?
J. What is the percentage change in the regression sum of squares?
K. What is the percentage change in the error sum of squares?
L. What is the percentage change in the R2?

Part A: The intercept parameter $0 is the value of the response variable (dependent variable) when the
explanatory variable is zero. It does not depend on the value of the explanatory variable, so the units of
measurement for the explanatory variable are not relevant.

The intercept parameter $0 has the same units as the response variable. If these units increase by a factor
of UM, $0 increases by a factor of UM. 

Illustration: An intercept of $0 dollars = $0 × 1.00 / 1.25 Euros (assuming €1.00 = $1.25) = $0 × 0.80 Euros.

If $0 = $10 for the regression model in dollars, then $0 = €8 for the regression model in euros.

Part B: If the explanatory variable changes by 1, the response variable changes by $1. The slope coefficient
$1 has units of dollars / miles. If the explanatory variable changes by 1 mile, the response variable changes
by $1 dollars. 

If the explanatory variable changes by 1 kilometer, it changes by e × 1 mile, so the response variable changes
by e × $1 dollars = e × $1 × 0.80 euros. The slope coefficient $1 for the regression equation in kilometers and
euros changes by a factor of e × 0.80 = 0.50.

Illustration: Suppose $1 = $0.20 per mile for the regression model in dollars. An insured who drives 400 miles
per annum has an annual cost that is $0.20 per mile × 100 miles per annum = $20 more per annum than an
insured who drives 0 miles per annum. 

! With the $1.25 = €1.00 exchange rate, $20 = €20/1.25 = €16.
! 100 miles = (1 / e) × 100 = 160 kilometers.

160 kilometers per annum increases annual costs by €16, so $1 = €16 / 160 kilometers per annum = 0.10. 

Part C: The units of , (the error term) are the same as the units of the response variable and of $0, so the units
of F are these units as well and the units of F2 are the square of these units. If the change in the units causes



$0 to be multiplied by 0.80, each error term is multiplied by 0.80, F is multiplied by 0.80, and F2 is multiplied
by 0.80 × 0.80 = 0.64. 

Illustration: If F2 = 25 dollars2 for the regression model in dollars, then F2 = 25 dollars2 × (0.8 dollars/euros)2

= 16 euros2 for the regression model in euros.

Parts E, F, L: Tests of significance do not change. If the regression equation in miles and dollars is significant,
the regression equation in kilometers and euros is significant. The t value, p value, and F value do not change. 

The t value is β̂ 0 divided by its standard error. The standard error (standard deviation) of a random variable
is in the same units of measurement as the random variable itself, so the t value does not change when the
units of measurement change. The F value is the square of the t value, so it also does not change. The p
value is the significance level of the t value, so it also does not change.

Part G: The width of the 95% confidence interval for $1 is 2 × F($1) × t5%, df, where t5%, df is the t value for a two-
sided 95% confidence interval for a t distribution with degrees of freedom = df. The t value does not depend
on the units of measurement, so the width of the 95% confidence interval is proportional to F($1) . In this
example, $1 is multiplied by 0.50, so F($1) is multiplied by 0.50, and the width of the 95% confidence interval
is multiplied by 0.50.

Part I: The total sum of squares SST depends on the values of the response variable. All these values are
squared, so if the response variable changes by a factor of UM, the SST changes by a factor of UM2.

Illustration: If the total sum of squares for the regression model in dollars is 1000 dollars2, it is 1000 dollars2

× (0.8 euros/dollar)2 = 640 euros2 for the regression model in euros.

Part J: The regression sum of squares SSR (= SST – SSE) is the portion of the total sum of squares explained
by the explanatory variable. The proportion does not depend on the units of measurement: the units of SST,
SSE, and SSR are the same. If the response variable changes by a factor of UM, SSR changes by a factor
of UM2. 

Part K: SSE = SST – SSR, so it changes by the same ratio as SST and SSR.

SSE = F2 × the degrees of freedom. The degrees of freedom does not change when units of measurement
change. In this example, F2 is multiplied by 0.64, so SSE is multiplied by 0.64.

Part L: SST, SSR, and SSE all change by the same percentage factor. The R2 is SSR / SST = 1 – SSE/SST,
so it does not change.



Exercise 18.3: Fahrenheit vs Centigrade

An American meteorologist regresses annual global warming (the response variable) in degrees Fahrenheit
on coal burned (the independent variable) in billions of pounds: 

global warming = $0 + $1 × energy use + , 

The response variable (global warming) is the change in the daily temperature over the year. 

The least squares estimate for $0 is 0.1 and the least squares estimate for $1 is 0.01. 

The meteorologist modifies the analysis to use degrees Centigrade and billions of kilograms for a presentation
in Europe. The formula to convert degrees Fahrenheit to degrees Centigrade is 

degrees Centigrade = (degrees Fahrenheit – 32E) × 5/9

For the weights, use 1 kilogram = 2.2 pounds (an approximate formula). 

A. If no coal is burned, what is the modeled global warming in degrees Fahrenheit?
B. What is $0 for the regression model in degrees Centigrade?
C. For each billion kilograms of coal burned, what is the extra global warming in degrees Centigrade?

Part A: If no coal is burned, the expected global warming = $0 + $1 × 0 = 0.1 degrees Fahrenheit.

Part B: Warming is the change in temperature:

degrees Centigrade = (degrees Fahrenheit – 32E) × 5/9 A 
change in degrees Centigrade = (change in degrees Fahrenheit) × 5/9

$0 for the regression model in degrees Centigrade = 0.1 × 5/9 = 0.55556.

Part C: For each billion pounds of coal burned, the extra global warming in degrees Fahrenheit is 0.01, so

 $1 = 0.01 degrees Fahrenheit / pounds =

 $1 = 0.01 × 5/9 degrees Centigrade / ( 1 / 2.2 kilograms) = 0.01 × (5/9) × (1/2.2) = 0.00253



Exercise 18.4: Miles Driven and Annual Claim Costs

We use least squares regression with N pairs of observations (Xi, Yi) to estimate average annual claims cost
in dollars per average miles driven per day, giving Y= 50 + 40X + ,.  For instance, a policyholder who drives
an average of 25 miles a day has average claim costs of 50 + 40 × 25 = 1,050 dollars a year.

If we change the parameters to annual claims costs in Euros and kilometers driven a day:

A. What is the revised value of $1?
B. What is the revised value of $0?

Assume €1.00 = $1.25 and 1 kilometer = e mile (five eighths of a mile).

Part A: The estimate of $1 is the covariance of X and Y divided by the variance of X.  

! Using euros multiplies each Y value by 1.00 / 1.25 = 0.80.
! Using kilometer multiplies each X value by 8/5 = 1.60.

Illustration: $10.00 = 10 × 0.80 = €8.00, and 10 miles = 10 × 1.60 = 16 kilometers.

Multiplying the Y values by 0.80 and the X values by 1.60

! Multiplies the covariance by 0.80 × 1.60 = 1.280
! Multiplies the variance of X by 1.602 = 2.560

This multiplies $1 by 1.280 / 2.560 = 0.500.

Part B: $0 is not affected by the units of X, since the product $1 × X is not affected by the units of X.  But $0

varies directly with the units of Y: if Y is multiplied by 0.80, $0 is multiplied by 0.80.

Question: Is the product $1 × X unit-less?

Answer: No; the product is in the units of Y.

We can check our result numerically:

! Before the change, if X = 0 miles, Y = $50.  Now X = 0 gives Y = €40, so $0 is 40.
! Before the change, if X = 5 miles, Y = $250.  Now X = 8 kilometers gives Y = $250 × 0.8 = €200.  Since

$0= 40, $1 is (200 – 40) / 8 = 20.


