MS Module 16: Regression estimates - practice problems

(The attached PDF file has better formatting.)

Exercise 16.1: Least squares estimator for β_1

- ! A linear regression uses the N points $X_i = \{1, 2, ..., 10, 11\}$
- ! The least squares estimator for β_1 is a linear function of the Y values = $\sum \gamma_i Y_i$

(The textbook uses the notation $\beta_1 = \sum c_i Y_i$)

- A. What is \bar{x} , the mean X value?
- B. What is $S_{_{\!X\!X\!}}$ the sum of squared residuals for the X values?
- C. What is γ_2 , the coefficient of the Y value corresponding to X=2, in the estimate of β_1 ?

Part A: The mean X value is (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11) / 11 = 6

Part B: S_{xx} , the sum of squared residuals for the X values, is

$$(1-6)^2 + (2-6)^2 + (3-6)^2 + (4-6)^2 + (5-6)^2 + (6-6)^2 + (7-6)^2 + (8-6)^2 + (9-6)^2 + (10-6)^2 + (11-6)^2 = 110$$

Part C: $\gamma_i = (x_i - \bar{x}) / S_{xx} = (2 - 6) / 110 = -0.03636$

Question: How does this formula relate to the formula $\beta_1 = S_{xy} / S_{xx}$?

Answer: Expand the formula $\beta_1 = S_{xy} / S_{xx} = \Sigma (x_i - \bar{x}) (y_i - \bar{y}) / S_{xx} =$

$$\Sigma (\mathbf{x}_{i} - \bar{\mathbf{x}}) \times \mathbf{y}_{i} / \mathbf{S}_{xx} - \Sigma (\mathbf{x}_{i} - \bar{\mathbf{x}}) \times \bar{\mathbf{y}} / \mathbf{S}_{xx} = \Sigma \gamma_{i} \mathbf{Y}_{i} - \mathbf{0}$$

The value of \bar{y} / S_{xx} is independent of the subscript *i*, so $\Sigma (x_i - \bar{x}) \times \bar{y} / S_{xx} = [\Sigma(x_i - \bar{x})] \times [\bar{y} / S_{xx}] = 0$, and

$$\Sigma (\mathbf{x}_{i} - \bar{\mathbf{x}}) \times \mathbf{y}_{i} / \mathbf{S}_{xx} - \Sigma (\mathbf{x}_{i} - \bar{\mathbf{x}}) \times \bar{\mathbf{y}} / \mathbf{S}_{xx} = \Sigma \gamma_{i} \mathbf{Y}_{i}$$

Exercise 16.2: Summary statistics

A regression analysis on 10 data points has summary statistics

- $\Sigma x_i = 40$
- $\Sigma y_i = 20$
- $\Sigma x_i^2 = 4,000$ $\Sigma y_i^2 = 1,200$
- i
- İ. $\Sigma x_{i}y_{i} = 1,600$
- A. What is \bar{x} , the average X value?
- B. What is y, the average Y value?
- C. What is Sxx, the sum of squares of the X values?
- D. What is S_{yy} , the sum of squares of the Y values?
- E. What is S_{xy}^{2} , the cross sum of squares of the X and Y values?
- F. What is the least squares estimate for β_1 ?
- G. What is the least squares estimate for β_0 ?
- H. What is the error sum of squares SSE?
- I. What is s², the least squares estimate for σ^2 ?
- J. What is the correlation ρ between X and Y?
- K. What is the least squares estimate for R²?

Part A: The average X value is $\bar{x} = \sum x_i / N = 40 / 10 = 4$

Part B: The average Y value is $\bar{y} = \sum y_i / N = 20 / 10 = 2$

Part C: S_{xx} , the sum of squared deviations of the X values, is $\Sigma x_i^2 - N \times \bar{x}^2 = \Sigma x_i^2 - (\Sigma x_i)^2 / N = 1$

 $4,000 - 10 \times 4^2 = 3,840$

Part D: S_{vv}, the sum of squares of the Y values (the total sum of squares SST), is $\Sigma y_i^2 - N \times \bar{y}^2 =$

 $1,200 - 10 \times 2^2 = 1,160$

Part E: S_{xv} , the cross sum of squares of the X and Y values, is $\sum x_i y_i - N \times \bar{x} \times \bar{y} =$

$$1,600 - 10 \times 4 \times 2 = 1,520$$

Part F: The least squares estimate for β_1 is $S_{xy} / S_{xx} = 1,520 / 3,840 = 0.395833$

Part G: The least squares estimate for β_0 is $\bar{y} - \beta_1 \times \bar{x} = 2 - 0.39583333 \times 4 = 0.416667$

Part H: The error sum of squares SSE is $\Sigma y_i^2 - \beta_0 \times \Sigma y_i - \beta_1 \times \Sigma x_i y_i =$

1,200 - 0.41666667 × 20 - 0.39583333 × 1,600 = 558.333339

Answer: Do we need so many significant digits?

Answer: Extra significant digits are not used in real problems, since they give a false sense of accuracy. The practice problems show many significant digits so that when you work the problems on a spread-sheet or a calculator you can check your answers.

Some terms have very small numbers multiplied by very large numbers. If you round 0.00149 x 200 to 0.001 × 200, your solution may be incorrect.

The textbook says "in computing \uparrow_0 , use extra digits in \uparrow_1 , because, if \bar{x} is large in magnitude, rounding may affect the final answer." See page 619 for an example.

Part I: The value of s², the least squares estimate for σ^2 , is SSE / (N-2) = 558.3333 / (10 - 2) = 69.7917

Part J: The correlation ρ between X and Y is $S_{xy} / (S_{xx} \times S_{yy})^{1/2} =$

 $1,520 / (3,840 \times 1,160)^{0.5} = 0.720193$

Part K: R² is 1 – SSE/SST; SST is the same as S_{vv}.

R² = 1 - 558.333333 / 1,160 = 0.518678

Note that R^2 is the square of the correlation between X and Y: $0.720193^2 = 0.518678$

Exercise 16.3: Estimating σ^2

A statistician estimating σ^2 for a regression analysis mistakenly uses divides SSE (the error sum of squares) by (n-1) instead of (n-2), where n is the number of observations.

If the population is normally distributed, n = 17, and $\sigma^2 = 4$:

- A. What is the expected value of the statistician's estimator?
- B. What is the bias of the statistician's estimator?

Part A: Let s² be the unbiased estimator of σ^2 , using a denominator of (n-2). The mistaken estimator using a denominator of (n-1) is s² × (n-2)/(n-1), and its expected value is $\sigma^2 \times (n-2)/(n-1)$.

Part B: The bias of the mistaken estimator is $\sigma^2 \times (n-2)/(n-1) - \sigma^2 = -\sigma^2/(n-1)$. For n = 17 and $\sigma^2 = 4$, the bias is -4/(17-1) = -4/16 = -0.250.

(See Example 7.6 on pages 339-340 of the textbook (second edition) or page 333 of the first edition)