MS Module 16: Regression estimates - practice problems
(The attached PDF file has better formatting.)
Exercise 16.1: Least squares estimator for β_{1}
! A linear regression uses the N points $X_{i}=\{1,2, \ldots, 10,11\}$
! The least squares estimator for β_{1} is a linear function of the Y values $=\sum \gamma_{i} Y_{i}$
(The textbook uses the notation $\beta_{1}=\sum c_{i} Y_{i}$)
A. What is \bar{x}, the mean X value?
B. What is $S_{x x}$, the sum of squared residuals for the X values?
C. What is γ_{2}, the coefficient of the Y value corresponding to $X=2$, in the estimate of β_{1} ?

Part A: The mean X value is $(1+2+3+4+5+6+7+8+9+10+11) / 11=6$
Part B : $S_{x x}$, the sum of squared residuals for the X values, is
$(1-6)^{2}+(2-6)^{2}+(3-6)^{2}+(4-6)^{2}+(5-6)^{2}+(6-6)^{2}+(7-6)^{2}+(8-6)^{2}+(9-6)^{2}+(10-6)^{2}+(11-6)^{2}=110$
Part C: $\gamma_{i}=\left(x_{i}-\bar{x}\right) / S_{x x}=(2-6) / 110=-0.03636$
Question: How does this formula relate to the formula $\beta_{1}=S_{x y} / S_{x x}$?
Answer: Expand the formula $\beta_{1}=\mathrm{S}_{\mathrm{xy}} / \mathrm{S}_{\mathrm{xx}}=\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right) / \mathrm{S}_{\mathrm{xx}}=$

$$
\sum\left(x_{i}-\bar{x}\right) \times y_{i} / S_{x x}-\sum\left(x_{i}-\bar{x}\right) \times \bar{y} / S_{x x}=\sum \gamma_{i} Y_{i}-0
$$

The value of $\bar{y} / S_{x x}$ is independent of the subscript i, so $\sum\left(x_{i}-\bar{x}\right) \times \bar{y} / S_{x x}=\left[\sum\left(x_{i}-\bar{x}\right)\right] \times\left[\bar{y} / S_{x x}\right]=0$, and

$$
\sum\left(x_{i}-\bar{x}\right) \times y_{i} / S_{x x}-\sum\left(x_{i}-\bar{x}\right) \times \bar{y} / S_{x x}=\sum \gamma_{i} Y_{i}
$$

Exercise 16.2: Summary statistics

A regression analysis on 10 data points has summary statistics
! $\quad \sum x_{i}=40$
! $\quad \Sigma y_{i}=20$
! $\quad \sum x_{i}^{2}=4,000$
! $\quad \sum y_{i}^{2}=1,200$
! $\quad \sum \mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=1,600$
A. What is \bar{x}, the average X value?
B. What is $\overline{\mathrm{y}}$, the average Y value?
C. What is $S_{x x}$, the sum of squares of the X values?
D. What is $S_{y y}$, the sum of squares of the Y values?
E. What is $S_{x y}$, the cross sum of squares of the X and Y values?
F. What is the least squares estimate for β_{1} ?
G. What is the least squares estimate for β_{0} ?
H. What is the error sum of squares SSE?
I. What is s^{2}, the least squares estimate for σ^{2} ?
J. What is the correlation ρ between X and Y ?
K. What is the least squares estimate for R^{2} ?

Part A: The average X value is $\bar{x}=\sum x_{i} / N=40 / 10=4$
Part B : The average Y value is $\bar{y}=\Sigma y_{i} / N=20 / 10=2$
Part C : $S_{x x}$, the sum of squared deviations of the X values, is $\sum x_{i}^{2}-N \times \bar{x}^{2}=\sum x_{i}^{2}-\left(\sum x_{i}\right)^{2} / N=$

$$
4,000-10 \times 4^{2}=3,840
$$

Part D: $S_{y y}$, the sum of squares of the Y values (the total sum of squares $S S T$), is $\sum y_{i}^{2}-N \times \bar{y}^{2}=$

$$
1,200-10 \times 2^{2}=1,160
$$

Part $E: S_{x y}$, the cross sum of squares of the X and Y values, is $\sum x_{i} y_{i}-N \times \bar{x} \times \bar{y}=$

$$
1,600-10 \times 4 \times 2=1,520
$$

Part F: The least squares estimate for β_{1} is $\mathrm{S}_{\mathrm{xy}} / \mathrm{S}_{\mathrm{xx}}=1,520 / 3,840=0.395833$
Part G : The least squares estimate for β_{0} is $\bar{y}-\beta_{1} \times \bar{x}=2-0.39583333 \times 4=0.416667$
Part H: The error sum of squares SSE is $\sum y_{i}{ }^{2}-\beta_{0} \times \sum y_{i}-\beta_{1} \times \sum x_{i} y_{i}=$
$1,200-0.41666667 \times 20-0.39583333 \times 1,600=558.333339$
Answer: Do we need so many significant digits?
Answer: Extra significant digits are not used in real problems, since they give a false sense of accuracy. The practice problems show many significant digits so that when you work the problems on a spread-sheet or a calculator you can check your answers.

Some terms have very small numbers multiplied by very large numbers. If you round 0.00149×200 to 0.001 $\times 200$, your solution may be incorrect.

The textbook says "in computing $\hat{\beta}_{0}$, use extra digits in $\hat{\beta}_{1}$, because, if \bar{x} is large in magnitude, rounding may affect the final answer." See page 619 for an example.

Part I: The value of s^{2}, the least squares estimate for σ^{2}, is SSE $/(N-2)=558.3333 /(10-2)=69.7917$
Part J: The correlation ρ between X and Y is $\mathrm{S}_{\mathrm{xy}} /\left(\mathrm{S}_{\mathrm{xx}} \times \mathrm{S}_{\mathrm{yy}}\right)^{1 / 2}=$

$$
1,520 /(3,840 \times 1,160)^{0.5}=0.720193
$$

Part $K: \mathrm{R}^{2}$ is $1-$ SSE/SST; SST is the same as S_{yy}.

$$
R^{2}=1-558.333333 / 1,160=0.518678
$$

Note that R^{2} is the square of the correlation between X and $Y: 0.720193^{2}=0.518678$

Exercise 16.3: Estimating σ^{2}
A statistician estimating σ^{2} for a regression analysis mistakenly use divides SSE (the error sum of squares) by ($n-1$) instead of ($n-2$), where n is the number of observations.

If the population is normally distributed, $n=17$, and $\sigma^{2}=4$:
A. What is the expected value of the statistician's estimator?
B. What is the bias of the statistician's estimator?

Part A : Let s^{2} be the unbiased estimator of σ^{2}, using a denominator of ($n-2$). The mistaken estimator using a denominator of $(n-1)$ is $s^{2} \times(n-2) /(n-1)$, and its expected value is $\sigma^{2} \times(n-2) /(n-1)$.

Part B : The bias of the mistaken estimator is $\sigma^{2} \times(n-2) /(n-1)-\sigma^{2}=-\sigma^{2} /(n-1)$. For $n=17$ and $\sigma^{2}=4$, the bias is $-4 /(17-1)=-4 / 16=-0.250$.
(See Example 7.6 on pages 339-340 of the textbook (second edition) or page 333 of the first edition)

