MS Module 15 or 21: Logistic regression models - practice problems
(The attached PDF file has better formatting.)
[Logistic regression is in module 15 for the $2^{\text {nd }}$ edition of the text and module 21 for the $3^{\text {rd }}$ edition of the text. The text reading is the same in the two editions. The $3^{\text {rd }}$ edition of the text has additional material on logistic regression that is not on the syllabus for this course.]

Exercise 15.1: Logistic regression
A probability Y is related to the independent variable X by logistic regression:

$$
Y=p(x)=\exp \left(\beta_{0}+\beta_{1} x\right) /\left(1+\exp \left(\beta_{0}+\beta_{1} x\right)\right)
$$

! When $X=7$, the probability Y is 20%.
! When $X=8$, the probability Y is 25%.
A. At $X=7$, what is the odds ratio of Y ?
B. At $X=8$, what is the odds ratio of Y ?
C. At $X=11$, what is the odds ratio of Y ?
D. At $X=11$, what is the probability of Y ?

Part A: The odds ratio of Y at $\mathrm{x}=7$ is $20 \% /(1-20 \%)=0.2500$.
Part B: The odds ratio of Y at $\mathrm{x}=8$ is $25 \% /(1-25 \%)=0.3333$.
Part C: The slope parameter β_{1} is the change in the \log odds for a 1 -unit increase in x , so the odds ratio itself changes by the multiplicative factor $\exp \left(\beta_{1}\right)$ when x increases by 1 unit. This factor is

$$
0.333333 / 0.25=1.33333
$$

11 is 3 units more than 8 , so the odds ratio of Y at $x=11$ is $0.333333 \times 1.333333^{3}=0.79012$
Part D: If $\mathrm{Y}=$ the probability and $\mathrm{R}=$ the odds ratio, $\mathrm{R}=\mathrm{Y} /(1-\mathrm{Y}) \Rightarrow \mathrm{Y}=\mathrm{R} /(1+\mathrm{R})$.
The probability is the odds ratio / ($1+$ odds ratio), so the probability of Y at $x=11$ is

$$
0.79012 / 1.79012=44.14 \%
$$

Exercise 15.2: Logistic regression
A statistician uses a logistic regression model:
! The independent variable X is a quantitative predictor.
! The dependent variable Y is 1 if the observation is a success and 0 otherwise.
The estimate of β_{1} is -0.20 .
The odds of success at $X=1$ are 50%.
A. What is the probability of success at $X=1$?
B. What are the odds of success at $X=3$?
C. What is the probability of success at $X=3$?
D. What are the odds of success at $X=0$?
E. What is the probability of success at $X=0$?
F. What is β_{0} ?

Part A : If the probability of success is P , the odds of success are $\mathrm{P} /(1-\mathrm{P})$.
Given that $P /(1-P)=50 \%, P=1 / 2-1 / 2 P \Rightarrow P=a$.
The formula is probability $=$ odds $/(1+$ odds $)=50 \% /(1+50 \%)=0.3333$
Part B: For each one unit increase in X, the odds of success increase by a factor $\exp \left(\hat{\beta}_{1}\right)=\mathrm{e}^{-0.20}=0.81873$
3 is 2 units more than 1 , so the odds of success at $X=3$ are $50 \% \times 0.81873^{2}=0.335159$
Part $C: P /(1-P)=0.33516 \Rightarrow 1.33516 P=0.33516 \Rightarrow P=0.33516 / 1.33516=0.25103$
Part D: 0 is 1 unit less than 1 , so the odds of success at $X=0$ are $50 \% / 0.81873=0.610702$
Part E : The probability of success at $X=0$ is $0.610702 / 1.610702=0.379153$
Part F: For logistic regression, $Y=\exp \left(\beta_{0}\right) /\left(1+\exp \left(\beta_{0}+\beta_{1} \times X\right)\right)$.
If $\mathrm{Y}=0.379153$ at $\mathrm{X}=0$, then $\exp \left(\beta_{0}\right) /\left(1+\exp \left(\beta_{0}\right)\right)=0.379153 \Rightarrow$
$(1-0.379153) \times \exp \left(\beta_{0}\right)=0.379153 \Rightarrow$
$\exp \left(\beta_{0}\right)=0.379153 /(1-0.379153)=0.610703$
$\beta_{0}=\ln (0.610703)=-0.49314$

