MS Module $5 t$ values and confidence intervals practice problems
(The attached PDF file has better formatting.)
Exercise 5.1: T test, one sample
A sample of $\mathrm{N}=15$ observations from a normal distribution has
! $\quad \sum x_{i}=120$ (sum of the N observations)
! $\quad \sum x_{i}^{2}=3,600$ (sum of the squares of the N observations)
! The null hypothesis is H_{0} : the population mean $\mu_{0}=4$
! This exercise shows the procedure for one-tailed and two-tailed tests, with either
" The two-tailed alternative hypothesis is H_{a} : the population mean $\mu_{0} \neq 4$
" The one-tailed (upper tailed) alternative hypothesis is H_{a} : the population mean $\mu_{0}>4$
A. What is the sample mean of the N observations?
B. What is the sample standard deviation of the N observations?
C. What is the t value used to test the null hypothesis?
D. What is the p value for the one-tailed alternative hypothesis?

E . What is the p value for the two-tailed alternative hypothesis?
Part A: The sample mean is $\sum x_{i} / N=120 / 15=8$.
Part B: The sample standard deviation $=\left\{\left[\Sigma x_{i}^{2}-\left(\Sigma x_{i}\right) / N\right] /(N-1)\right\}^{0.5}=$

$$
\left(\left(3,600-120^{2} / 15\right) /(15-1)\right)^{0.5}=13.732131
$$

Part C : The t value used to test the null hypothesis is $\left(\overline{\mathrm{x}}-\mu_{0}\right) /\left(\sigma / N^{0.5}\right)=$

$$
(8-4) /\left(13.732131 / 15^{0.5}\right)=1.128152
$$

Part D: The p value for the one-tailed alternative hypothesis $=0.1391$ (table look-up or spreadsheet function)
Part E:The p value for the two-tailed alternative hypothesis $=0.2782$ (table look-up or spreadsheet function)

Exercise 5.2: t values and confidence intervals
A statistician estimates the population mean for a normal distribution from a sample of 8 points. The 99% confidence interval for the population mean is ($0,2.500$)
A. What is the critical t value for a 99% confidence interval from a sample of 8 points?
B. What is the standard deviation of the sample?
C. What is the critical t value for a 95% confidence interval from a sample of 8 points?
D. What is the 95% confidence interval for the population mean?

Part A: A sample with 8 points has 7 degrees of freedom. The critical t value for a 99% confidence interval with 7 degrees of freedom is 3.499 (table lookup).

Part B: The confidence interval is the estimate $\pm \sigma / \sqrt{N} \times t$ value, so
! the point estimate is $(2.500+0) / 2=1.250$
! the width of the confidence interval is $2 \times \sigma / \sqrt{\mathrm{N}} \times t$ value $=2.500-0=2.500 \Rightarrow$ " $\sigma=8^{0.5} \times 2.500 /(2 \times 3.499)=1.010$

Part C: The critical t value for a 95% confidence interval with 7 degrees of freedom is 2.365 (table lookup).
Part D: The confidence interval is $1.250 \pm\left(1.010 / 8^{0.5}\right) \times 2.365$:
! lower bound: $1.250-\left(1.010 / 8^{0.5}\right) \times 2.365=0.405$
! upper bound: $1.250+\left(1.010 / 8^{0.5}\right) \times 2.365=2.095$

Exercise 5.3: t values and two confidence intervals

A statistician estimates the population mean for a normal distribution from a sample of 8 points.
! The upper bound of the 95% confidence interval for the population mean is 5 .
! The lower bound of the 90% confidence interval for the population mean is 1 .
We use the following notation:
! $\mu=$ the estimated population mean
! $\sigma=$ the standard deviation of the sample
! $N=$ the number of observations
A. What is the critical t value for a two-sided 95% confidence interval for a sample of 8 points?
B. What is the critical t value for a two-sided 90% confidence interval for a sample of 8 points?
C. What is σ / \sqrt{N} ?
D. What is σ ?
E. What is μ ?

Part A: A sample of 8 points has $8-1=7$ degrees of freedom.
The critical t value for a two-sided 95% confidence interval for a sample of 8 points is 2.3646 (table look-up).
Part B: A sample of 8 points has $8-1=7$ degrees of freedom.
The critical t value for a two-sided 90% confidence interval for a sample of 8 points is 1.8946 (table look-up).
Part C: Combine the upper half of the 95% confidence interval with the lower half of the 90% confidence interval to estimate $\sigma / \sqrt{ } \mathrm{N}$:
$2.3646 \times \sigma / \sqrt{N}=5-\mu$
$!$
$1.8946 \times \sigma / \sqrt{N}=\mu-1$
adding: $(2.3646+1.8946) \times \sigma / \sqrt{ } \mathrm{N}=(5-\mu)+(\mu-1)=(5-1) \Rightarrow$
$\sigma / \sqrt{N}=(5-1) /(2.3646+1.8946)=0.93914$
Part D: $\sigma=0.93914 \times 8^{0.5}=2.656$
Part E: Solve for μ by either of the confidence intervals:
$\begin{array}{ll}! & 2.3646 \times \sigma / \sqrt{ } N=5-\mu \Rightarrow \mu=5-2.3646 \times 0.93914=2.779 \\ ! & 1.8946 \times \sigma / \sqrt{ } N=\mu-1 \Rightarrow \mu=1+1.8946 \times 0.93914=2.779\end{array}$

