MS Module 7 Hypothesis testing -p values practice problems

(The attached PDF file has better formatting.)

Exercise 7.1: Proportions

The average incidence of resistance to a disease in a population is 25%. A study tests whether a drug raises the incidence of resistance: 5,000 subjects are given the drug and 1,300 show resistance to the disease. Let μ_0 = the percent of subjects who show resistance to the disease. The null hypothesis assumes $\mu = 25\%$ (μ_0).

- ! The null hypothesis is H_0 : the population mean $\mu = \mu_0 = 25\%$
- ! The alternative hypothesis takes one of two forms:
 - " The two-tailed alternative hypothesis is H_a : the population mean $\mu \neq \mu_0$ (25%)
 - " The one-tailed (upper tailed) alternative hypothesis is H_a : the population mean $\mu > \mu_0$ (25%)
- A. What is the incidence of resistance in the sample of 5,000 subjects?
- B. What is the standard deviation of the incidence of resistance in the sample?
- C. What is the z value used to test the null hypothesis?
- D. What is the *p* value for the one-tailed alternative hypothesis?
- E. What is the *p* value for the two-tailed alternative hypothesis?

Part A: The observed incidence of resistance in the sample is 1,300 / 5,000 = 26%.

Part B: The standard deviation of the incidence of resistance is $(p(1 - p) / N)^{\frac{1}{2}}$ =

$$(25\% \times (1 - 25\%) / 5,000)^{0.5} = 0.0061237$$

Question: Why do we use the assumed incidence of resistance in the population for the standard deviation? Why not use the observed incidence of resistance in the sample?

Answer: We are testing the null hypothesis to see the likelihood of observing the sample incidence; that is

If the null hypothesis is true and the incidence of resistance in the sample is 25%, what is the probability of observing an incidence of 26% in the sample?

Part C: The z value to test the null hypothesis is (26% - 25%) / 0.0061237 = 1.633000

Part D: The *p* value for the one-tailed alternative hypothesis is $\Phi(-1.633) = 0.0512$.

Part E: The *p* value for the two-tailed alternative hypothesis is $2 \times \Phi(-1.633) = 0.1025$.

Answer: Why do we use the normal distribution for a percentage? Shouldn't we use a binomial distribution?

Answer: With 5,000 subjects of whom 1,300 are resistant, the central limit theorem says that the incidence of resistance is approximately normally distributed

Exercise 7.2: Power of a test

[This exercise helps you understand the reading in the text. You will not be asked to calculate powers on the final exam.]

Subjects in an untreated population have reaction times that are normally distributed with a mean of 80 and a standard deviation of 12.

To test if a new treatment reduces the reaction time,

- ! The null hypothesis is H_0 : $\mu = 80$.
- ! The alternative hypothesis is H_a : $\mu < 80$.

The treatment does not change the standard deviation.

The sample has 100 observations and the significance level is 1%. Let \bar{x} be the mean of the sample values.

- A. What is the z value to test the null hypothesis as a function of \bar{x} ?
- B. What is the rejection region for the null hypothesis?
- C. What is the upper bound of the rejection region?
- D. If the true mean is 74, what is the power of the test?
- E. How does the power of the test relate to the difference of the mean μ' from the μ_0 in the null hypothesis?
- F. How does the power of the test relate to the standard deviation σ ?
- G. How does the power of the test relate to the significance level α ?
- H. How does the power of the test relate to the number of observations in the sample?

Part A: The *z* value is $(\bar{x} - \mu_0) / (\sigma / \sqrt{n}) = (\bar{x} - 80) / (12 / \sqrt{100}) = (\bar{x} - 80) / 1.2$

Part B: A one-sided lower tailed test with significance level $\alpha = 1\%$ rejects the null hypothesis if $z \le \Phi(-0.01)$, where $z = (\bar{x} - 80) / (12 / \sqrt{100}) = (\bar{x} - 80) / 1.20$.

Part C: We solve for the upper bound of the rejection region:

 $(\bar{x} - 80) / 1.20 = -2.32635 \Rightarrow$ $\bar{x} = -2.32635 \times 1.2 + 80 = 77.2084$

(A one-sided lower-tailed rejection region has no lower bound.)

Part D: The power of the test is the probability of rejecting the null hypothesis for a given value of the true μ .

For a true μ of 74, this probability is Φ ((upper bound $-\mu'$) / (σ / \sqrt{n})) =

 $\Phi((77.2084 - 74) / 1.2) = \Phi(2.67365) = 0.996248.$

Part E: The power (the likelihood of rejecting the null hypothesis) increases as the as the mean μ' becomes farther away from μ_0 , the mean in the null hypothesis.

Part F: As the standard deviation σ increases, the power of the test decreases, since random fluctuations are more likely to cause the sample mean to differ from the μ_0 in the null hypothesis and we are less likely to reject the null hypothesis.

Part G: As α decreases (the test becomes more stringent), the confidence interval around the μ_0 in the null hypothesis becomes wider, we are less likely to reject the null hypothesis and the power of the test decreases.

Part H: As the number of observations in the sample increases, the power of the test increases, since random fluctuations are smoothed.