MS Module 21 Multiple regression s^{2} adjusted R^{2} practice exam questions
(The attached PDF file has better formatting.)
[The practice problems in the 24 modules explain the statistical procedures; the practice exam questions in this thread shows what you will be asked on the final exam.]

A multiple regression analysis $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\epsilon$, with 5 data points and independent variables X_{1} and X_{2} has the following actual values $\left(y_{i}\right)$ and fitted values $\left(\hat{y}_{i}\right)$:

Actual Value	2.4	0.8	6.1	10.9	9.8
Fitted Value	2	4.0	6	8	10

! The null hypothesis is $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0$
! The alternative hypothesis is $\mathrm{H}_{2}: \beta_{1} \neq 0$ or $\beta_{2} \neq 0$

Question 21.1: Residuals
What are the residuals for the five data points?
Answer 21.1: residual = actual value - fitted value:

obs	fitted	actual	residual	SST	SSE
$\# 1$	2	2.4	0.4	12.96	0.16
$\# 2$	4	0.8	-3.2	27.04	10.24
$\# 3$	6	6.1	0.1	0.01	0.01
$\# 4$	8	10.9	2.9	24.01	8.41
$\# 5$	10	9.8	-0.2	14.44	0.04
avg	6	6	0	78.46	18.86

Question 21.2: Total sum of squares
What is the total sum of squares (SST)?
Answer 21.2: average y-value $=(2.4+0.8+6.1+10.9+9.8) / 5=6$
SST $=(2.4-6)^{2}+(0.8-6)^{2}+(6.1-6)^{2}+(10.9-6)^{2}+(9.8-6)^{2}=78.46$

Question 21.3: Error sum of squares

What is the error sum of squares (SSE)?
Answer 21.3: SSE $=(2.4-2)^{2}+(0.8-4)^{2}+(6.1-6)^{2}+(10.9-8)^{2}+(9.8-10)^{2}=18.86$

Question 21.4: Least squares estimate for σ^{2}
What is s^{2}, the least squares estimate for σ^{2} ?

Answer 21.4: $18.86 /(5-2-1)=9.43$
(least squares estimate for $\sigma^{2}=$ error sum of squares / degrees of freedom, which are N-k-1)

Question 21.5: R^{2}
What is R^{2} ?
Answer 21.5: 1 - $18.86 / 78.46=75.96 \%$
($R^{2}=1$ - error sum of squares / total sum of squares)

Question 21.6: Adjusted R^{2}
What is the adjusted R^{2} ?
Answer 21.6: $1-18.86 /(5-2-1) /(78.46 /(5-1))=51.92 \%$
(adjust SSE and SST by their degrees of freedom: adjusted $R^{2}=1-$ MSE / MST
$=1-[\operatorname{SSE} /(n-(k+1)] /[\operatorname{SST} /(n-1)])$

Question 21.7: F value
What is the test statistic value f to test the null hypothesis?
Answer 21.7: $((78.46-18.86) / 2) /(18.86 /(5-2-1))=3.160$
(test statistic $\left.f=\left[\mathrm{R}^{2} / \mathrm{k}\right] /\left[\left(1-\mathrm{R}^{2}\right) /(\mathrm{n}-(\mathrm{k}+1))\right]\right)$

