MS Module 16 Regression summary statistics practice exam questions
(The attached PDF file has better formatting.)
[The practice problems in the 24 modules explain the statistical procedures; the practice exam questions in this thread shows what you will be asked on the final exam.]

A regression analysis on 11 data points has summary statistics
! $\quad \sum x_{i}=8$
! $\quad \sum y_{i}=15$
! $\quad \sum x_{i}^{2}=41$
! $\quad \sum y_{i}^{2}=55$
! $\quad \sum x_{i} y_{i}=41$

Question 16.1: \bar{x}
What is \bar{x}, the average X value?
Answer 16.1: $8 / 11=0.727273$
(average $=$ total $/$ number of observations)

Question 16.2: y
What is \bar{y}, the average Y value?
Answer 16.2: $15 / 11=1.363636$
(average $=$ total $/$ number of observations)

Question 16.3: S_{xx}
What is $S_{x x}$, the sum of squares of the X values?
Answer 16.3: $41-0.727273^{2} \times 11=35.182$
($S_{x x}$, the sum of squared deviations of the X values, is $\sum x_{i}^{2}-N \times \bar{x}^{2}$)

Question 16.4: $S_{y y}$
What is $S_{y y}$, the sum of squares of the Y values?
Answer 16.4: $55-1.363636^{2} \times 11=34.545$
($S_{y y}$, the sum of squares of the Y values, is $\Sigma y_{i}{ }^{2}-N \times \bar{y}^{2}$)

Question 16.5: S_{xy}
What is $S_{x y}$, the cross sum of squares of the X and Y values?
Answer 16.5: $41-8 \times 15 / 11=30.091$
$\left(S_{x y}\right.$, the cross sum of squares of the X and Y values, is $\sum x_{i} y_{i}-N \times \bar{x} \times \bar{y}=\sum x_{i} y_{i}-\sum x_{i} \times \Sigma y_{i} / N$)

Question 16.6: Least squares estimate for β_{1}
What is the least squares estimate for β_{1} ?
Answer 16.6: $30.091 / 35.182=0.855$
(least squares estimate for $\beta_{1}=S_{x y} / S_{x x}$)

Question 16.7: Least squares estimate for β_{0}
What is the least squares estimate for β_{0} ?
Answer 16.7: $1.364-0.727 \times 0.855=0.742$
(least squares estimate for $\beta_{0}=\bar{y}-\bar{x} \times \beta_{1}$)

Question 16.8: Error sum of squares
What is the error sum of squares?
Answer 16.8: $55-0.742 \times 15-0.855 \times 41=8.815$; with more significant digits for β_{0} and β_{1}, ESS $=8.809$
(error sum of squares SSE is $\sum y_{i}^{2}-\beta_{0} \times \sum y_{i}-\beta_{1} \times \sum x_{i} y_{i}$)

Question 16.9: Least squares estimate for σ^{2}
What is s^{2}, the least squares estimate for σ^{2} ?
Answer 16.9: $8.809 /(11-2)=0.979$
(least squares estimate for $\sigma^{2}=$ error sum of squares / (number of observations -2))

Question 16.10: Least squares estimate for σ
What is s , the least squares estimate for σ ?
Answer 16.10: $0.979^{0.5}=0.989$
(standard deviation = square root of variance)

Question 16.11: Standard deviation of least squares estimate for β_{1} What is the standard deviation of the least squares estimate for β_{1} ?

Answer 16.11: $0.989 / 35.182^{0.5}=0.167$
(the standard deviation of the least squares estimate for $\beta_{1}=\sigma / S_{x x}{ }^{0.5}$)

Question 16.12: R^{2}
What is the least squares estimate for R^{2} ?
Answer 16.12: $1-8.809 / 34.545=0.745$
(the least squares estimate for $R^{2}=1$ - error sum of squares $/ S_{y y}$)

Question 16.13: Correlation
What is the estimated correlation ρ between X and Y ?
Answer 16.13: $30.091 /(35.182 \times 34.545)^{0.5}=0.863$
(the estimated correlation ρ between X and $Y=S_{x y} /\left(S_{x x} \times S_{y y}\right)^{0.5}$

