MS Module 15 Logistic regression odds ratio practice exam questions
[Module 15 for the $2^{\text {nd }}$ edition of the textbook and Module 21 for the $3^{\text {rd }}$ edition of the textbook.]
(The attached PDF file has better formatting.)
A probability Y is related to the independent variable X by logistic regression:

$$
Y=\operatorname{probability}(x)=\exp \left(\beta_{0}+\beta_{1} x\right) /\left(1+\exp \left(\beta_{0}+\beta_{1} x\right)\right)
$$

! When $X=5.4$, the probability Y is 31%
! When $X=6.2$, the probability Y is 39%

Question 15.1: Odds ratio
At $\mathrm{X}=5.4$, what is the odds ratio of Y ?
Answer 15.1:31\% / $(1-31 \%)=0.449$
(odds ratio $=$ probability / ($1-$ probability $)$

Question 15.2: Odds ratio
At $\mathrm{X}=6.2$, what is the odds ratio of Y ?
Answer 15.2: 39\% / ($1-39 \%$) $=0.639$
(odds ratio = probability / (1 - probability)

Question 15.3: Multiplicative change in the odds ratio
What is the multiplicative change in the odds ratio, or $\exp \left(\beta_{1}\right)$, when x increases by 1 unit?
Answer 15.3: $(0.639 / 0.449)^{(1 /(6.2-5.4))}=1.554$
(the multiplicative change in the odds ratio, or $\exp \left(\beta_{1}\right)$, when x increases by 1 unit, $=$
(odds at point X_{2} / odds at point $\left.\mathrm{X}_{1}\right)^{(1 /(\text { value of } \mathrm{X} 2 \text { - value of } \mathrm{X} 1) \text {) }}$

Question 15.4: Odds ratio
At $\mathrm{X}=6.9$, what is the odds ratio of Y ?
Answer 15.4: $0.639 \times 1.554^{(6.9-6.2)}=0.870$
(odds ratio at point $X_{3}=$ odds ratio at point $X_{2} \times$ (multiplicative change in odds ratio) ${ }^{\text {(value of point } \times 3 \text { - value of point } \times 2 \text {) }}$

Question 15.5: Probability of Y
At $X=6.9$, what is the probability of Y ?

Answer 15.5: $0.870 /(1+0.870)=46.52 \%$
(probability $=$ odds ratio $/(1+$ odds ratio $)$

