MS Module 14 Two-factor ANOVA interaction practice exam questions
(The attached PDF file has better formatting.)
[The practice problems in the 24 modules explain the statistical procedures; the practice exam questions in this thread shows what you will be asked on the final exam.]

A two-factor classification table has two rows, two columns, and two observations in each cell.

	Column 1	Column 2
Row 1	$32 ; 33$	$32 ; 27$
Row 2	$14 ; 29$	$20 ; 22$

We use analysis of variance to test
! whether the Row 1 mean differs from the Row 2 mean
" the null hypothesis is that the row means are equal
! whether the Column 1 mean differs from the Column 2 mean
" the null hypothesis is that the column means are equal
! whether the interaction effects are significant
" the null hypothesis is that the interaction effects are zero
Question 14.1: Square of sum of observations
What is the square of the sum of all the observations, or $\mathrm{X}_{\ldots 2}$?
Answer 14.1: $(32+33+32+27+14+29+20+22)^{2}=43,681$

Question 14.2: Correction factor
What is the correction factor used for the total sum of squares and the treatment sums of squares (for both rows and columns)?

Answer 14.2: $43,681 / 8=5,460.125$
(correction factor $=$ the square of the sum of the observations / the number of observations)

Question 14.3: Sum of squares of observations
What is the sum of the squares of all the observations, or $\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \Sigma_{\mathrm{k}} \mathrm{x}_{\mathrm{ik} 2}$?
Answer 14.3: $\left(32^{2}+33^{2}+32^{2}+27^{2}+14^{2}+29^{2}+20^{2}+22^{2}\right)=5,787$

Question 14.4: Sum of squares of totals by cell
What is the sum of the squares of the totals in each cell, or $\Sigma_{\mathrm{i}} \Sigma_{\mathrm{j}} \mathrm{x}_{\mathrm{ij}}{ }^{2}$?
Answer 14.4: $(32+33)^{2}+(32+27)^{2}+(14+29)^{2}+(20+22)^{2}=11,319$

Question 14.5: Sum of squares of row totals

What is the sum of the squares of the row totals, or $\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{i} .2}$
Answer 14.5: $(32+33+32+27)^{2}+(14+29+20+22)^{2}=22,601$

Question 14.6: Sum of squares of column totals
What is the sum of the squares of the column totals, or $\sum_{\mathrm{j}} \mathrm{x}_{\mathrm{j} .2}$
Answer 14.6: $(32+33+14+29)^{2}+(32+27+20+22)^{2}=21,865$

Question 14.7: Total sum of squares
What is SST, the total sum of squared deviations?
Answer 14.7: 5,787-5,460.125 = 326.875
(total sum of squares $=$ the sum of the squares of all the observations - the correction factor)

Question 14.8: SSA
What is SSA, the sum of squared deviations for the i dimension (the rows)?
Answer 14.8: 22,601/4-5,460.125 = 190.125
(SSA = the sum of the squares of the row totals / observations per row - the correction factor)

Question 14.9: SSB
What is SSB, the sum of squared deviations for the j dimension (the columns)?
Answer 14.9: 21,865 / 4-5,460.125 = 6.125
(SSB = the sum of the squares of the column totals / observations per column - the correction factor)

Question 14.10: Error sum of squares
What is SSE, the error sum of squared deviations?
Answer 14.10: 5,787-11,319 / $2=127.50$
(error sum of squares = the sum of the squares of the observations - the sum of the squares of the totals in each cell / number of observations by cell)

Question 14.11: SSAB
What is SSAB, the sum of squared deviations for the interaction?
Answer 14.11: 326.875-190.125-6.125-127.50=3.125

Question 14.12: Degrees of freedom
What are the degrees of freedom for the rows (SSA)?
Answer 14.12: 2-1 = 1
(the degrees of freedom for the rows = number of rows -1)

Question 14.13: Degrees of freedom
What are the degrees of freedom for the columns (SSB)?
Answer 14.13: 2-1 = 1
(the degrees of freedom for the columns = number of columns -1)

Question 14.14: Degrees of freedom
What are the degrees of freedom for the interaction effects (SSAB)?
Answer 14.14: $(2-1) \times(2-1)=1$
(the degrees of freedom for the interaction effects $=($ number of rows -1$) \times($ number of columns -1$)$

Question 14.15: Degrees of freedom
What are the degrees of freedom for the total sum of squares (SST)?
Answer 14.15: $8-1=7$
(the degrees of freedom for the total sum of squares = number of observations -1)

Question 14.16: Degrees of freedom

What are the degrees of freedom for the error sum of squares (SSE)?
Answer 14.16: 7-1-1-1 = 4
(degrees of freedom for SSE = degrees of freedom for SST - degrees of freedom for SSA - degrees of freedom for SSB - degrees of freedom for SSAB)

Question 14.17: Mean squared deviation for the rows
What is MSA, the mean squared deviation for the rows?
Answer 14.17: $190.125 / 1=190.125$
(MSA = SSA / degrees of freedom)

Question 14.18: Mean squared deviation for the columns

What is MSB, the mean squared deviation for the columns?
Answer 14.18: 6.125/1 $=6.125$
(MSB = SSB / degrees of freedom)

Question 14.19: Mean squared deviation for the interaction
What is MSAB, the mean squared deviation for the interaction?
Answer 14.19: $3.125 / 1=3.125$
(MSAB = SSAB / degrees of freedom)

Question 14.20: Mean squared error
What is MSE, the mean squared error?
Answer 14.20: $127.50 / 4=31.875$
(MSE = SSE / degrees of freedom)

Question 14.21: F value
What is f_{A}, the f value for testing significance of the row differences?
Answer 14.21: $190.125 / 31.875=5.965$
(f_{A}, the f value for testing significance of the row differences, is MSA / MSE)

Question 14.22: Fvalue
What is f_{B}, the f value for testing significance of the column differences?
Answer 14.22: $6.125 / 31.875=0.192$
(f_{B}, the f value for testing significance of the column differences, is MSB / MSE)

Question 14.23: F value
What is $f_{A B}$, the f value for testing significance of the interaction effect?
Answer 14.23: $3.125 / 31.875=0.098$
($f_{A B}$, the f value for testing significance of the interaction effect, is MSAB / MSE)

