MS Module 9 Difference of means for small samples practice exam questions
(The attached PDF file has better formatting.)
Samples from two groups have the following samples sizes, means, and standard deviations:

Group	Sample Size	Sample Mean	Sample SD
Group 1	5	12	1.1
Group 2	7	15	1.4

$\mu_{1}=$ the mean of Group \#1; $\mu_{2}=$ the mean of Group \#2.
The null hypothesis is $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$; the alternative hypothesis is $\mathrm{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}$.
Question 9.1: Variance of estimated mean
What is the variance of the estimated mean of each group?
Answer 9.1: variance of the estimated mean $=(\text { standard deviation })^{2} /$ number of observations
! Group 1: $1.1^{2} / 5=0.242$
! Group 2: $1.4^{2} / 7=0.280$

Question 9.2: Variance of estimated difference of group means
What is the variance of the estimated difference of the group means?
Answer 9.2: $0.242+0.280=0.522$
(variance of the estimated difference of the group means = sum of variances of estimated group means)

Question 9.3: Standard deviation of estimated difference of group means

What is the standard deviation of the estimated difference of the group means?
Answer 9.3: $0.522^{0.5}=0.7225$
(standard deviation = square root of the variance)

Question 9.4: Degrees of freedom
What are the degrees of freedom for a t test of each group's mean?
Answer 9.4: Degrees of freedom = number of observations -1
! Group 1:5-1=4
! Group 2: 7-1 = 6

Question 9.5: Degrees of freedom

What are the degrees of freedom for a t test of the difference of the group means?
Answer 9.5: The approximate degrees of freedom is
$\left(\mathrm{s}^{21} / \mathrm{m}+\mathrm{s}^{22} / \mathrm{n}\right)^{2} /\left(\mathrm{s}^{21} / \mathrm{m}\right)^{2} /(\mathrm{m}-1)+\left(\mathrm{s}^{22} / \mathrm{n}\right)^{2} /(\mathrm{n}-1)=$
(variance of group 1 mean + variance of group 1 mean) ${ }^{2} /$
(square of variance of group 1 mean / (group 1 observations -1)

+ square of variance of group 2 mean $/($ group 2 observations -1$))=$

$$
(0.242+0.280)^{2} /\left(0.242^{2} /(5-1)+0.28^{2} /(7-1)\right)=9.834
$$

We truncate the degrees of freedom to 9 .

Question 9.6: t value for difference of group means
What is the t value for a 90% two-sided confidence interval of the difference of the group means?
Answer 9.6: 1.833
(the t value for a 90% two-sided confidence interval is the t value for a 5% one-tailed test with 9 degrees of freedom)

Question 9.7: Confidence interval

What is the 90% two-sided confidence interval of the difference of the group means $\left(\mu_{1}-\mu_{2}\right)$?
Answer 9.7: Confidence interval $=\left(\mu_{1}-\mu_{2}\right) \pm t$ value \times standard deviation of the difference of the group means
! lower bound: $(12-15)-1.833 \times 0.7225=-4.324$
! upper bound: $(12-15)+1.833 \times 0.7225=-1.676$

