MS Module $5 t$ values and two confidence intervals practice exam questions
A statistician estimates the population mean for a normal distribution from a sample of 6 points.
! The upper bound of the 99% confidence interval for the population mean is 5.78.
! The lower bound of the 95% confidence interval for the population mean is 1.4.

Question 5.1: Critical t value

What is the critical t value for a 99% confidence interval from a sample of 6 points?
Answer 5.1: 4.0321 (table look-up)

Question 5.2: Critical t value
What is the critical t value for a 95% confidence interval from a sample of 6 points?
Answer 5.2: 2.5706 (table look-up)

Question 5.3: Standard error of estimated mean

What is the standard error of the estimated mean of the population?
Answer 5.3: $(5.78-1.4) /(4.0321+2.5706)=0.6634$
Let μ be the mean of the sample and Z be the standard error of the estimated mean of the population. Form two equations:
! From the 99% confidence interval: $5.78-\mu=4.0321 \times Z$
! From the 95% confidence interval: $\mu-1.40=2.5706 \times Z$
Adding the two equations gives $(5.78-1.40)=(4.0321+2.5706) \times Z$, so
$Z=(5.78-1.40) /(4.0321+2.5706)$
(standard error of the estimated mean of the population = (upper bound of first confidence interval - lower bound of second confidence interval) / (critical t value of first confidence interval + critical t value of second confidence interval)

Question 5.4: Standard deviation of the sample
What is the standard deviation of the sample?
Answer 5.4: $0.6634 \times 6^{0.5}=1.625$
(standard deviation of the sample $=$ standard error of the estimated mean of the population \times square root of the number of observations in the sample)

Question 5.5: Estimated mean of the population

What is the estimated mean of the population?
Answer 5.5: (two formulas:)
! $5.78-4.0321 \times 0.6634=3.105$
! $1.4+2.5706 \times 0.6634=3.105$
(estimated mean of the population $=$ upper bound of the confidence interval - critical t value \times standard error of the estimated mean OR lower bound of the confidence interval + critical t value \times standard error of the estimated mean)

