MS Module 4 pps mcq type 1 and type 2 errors practice exam questions
(The attached PDF file has better formatting.)
A population has a normal distribution with a mean μ_{0} of 60 and a standard deviation of 7.3
One group from this population has been treated to reduce its mean; we assume it is still normally distributed with the same standard deviation. A sample of size 22 from this treated group has a sample mean of $\overline{\mathrm{x}}$ and a true mean of μ^{\prime}.
$!$ The null hypothesis is $\mathrm{H}_{0}: \mu^{\prime}=\mu_{0}$.
! The one-sided alternative hypothesis is $\mathrm{H}_{\mathrm{a}}: \mu^{\prime}<\mu_{0}$.
We reject the null hypothesis if $\bar{x} \leq 58.8$

Question 4.1: Standard deviation of sample mean
What is the standard deviation of the sample mean?
Answer 4.1: $7.3 / 22^{0.5}=1.556$
$\left(\right.$ standard deviation of the sample mean $=$ standard deviation $/\left(\right.$ number of observations in sample) ${ }^{0.5}$)

Question 4.2: z statistic
What is the z statistic value to test the null hypothesis?
Answer 4.2: $(58.8-60) / 1.556=-0.771$
(the z statistic value to test the null hypothesis $=\left(\right.$ sample mean - mean assumed in null hypothesis $\left.\left(\mu_{0}\right)\right)$ / standard deviation of the sample mean)

Question 4.3: Probability of Type I error
What is the probability of a Type I error for this one-sided (lower-tailed) test?
Answer 4.3: $\Phi(-0.771)=0.2203$
Interpolating in the statistical tables:

```
\[
\Phi(0.77)=0.7794
\]
\[
\Phi(0.78)=0.7823
\]
\[
\Phi(-0.771)=1-((0.771-0.77) \times 0.7823+(0.78-0.771) \times 0.7794) /(0.78-0.77)=0.2203
\]
```

Question 4.4: Probability of Type II error
If the true mean of the sample μ^{\prime} is 59.3 , what is the probability of a Type II error for this test?
Answer 4.4: $(59.3-58.8) / 1.556=0.3213$, so $\Phi(59.3-58.8) / 1.556=\Phi(0.3213)=0.6260$

Interpolating in the statistical tables:
$\Phi(0.32)=0.6255$
$\Phi(0.33)=0.6293$
$\Phi(0.3213)=((0.3213-0.32) \times 0.6293+(0.33-0.3213) \times 0.6255) /(0.33-0.32)=0.6260$

