MS Module 2 Normal distribution practice exam questions.
(The attached PDF file has better formatting.)
A sample from a normal distribution has summary statistics:
! $\mathrm{n}=10$
! $\quad \sum x_{i}=21$
! $\quad \sum x_{i}^{2}=159$
Question 2.1: Sample mean
What is the mean of the sample?
Answer 2.1: The mean of the sample is $21 / 10=2.1$
Question 2.2: Sample variance
What is the variance of the sample?
Answer 2.2: The sum of squared deviations is $159-21^{2} / 10=114.90$ and the sample variance is

$$
\left(159-21^{2} / 10\right) /(10-1)=12.767
$$

Question 2.3: Standard deviation

What is the standard deviation of the sample?
Answer 2.3: The standard deviation is the square root of the variance: $\left(\left(159-21^{2} / 10\right) /(10-1)\right)^{0.5}=3.573$
Question 2.4: Maximum likelihood estimate of the variance
What is the maximum likelihood estimate of the variance?
Answer 2.4: $\left(159-21^{2} / 10\right) / 10=11.490$
(The maximum likelihood estimate of the variance divides by N , not by ($\mathrm{N}-1$).)
Question 2.5: Maximum likelihood estimate of the standard deviation
What is the maximum likelihood estimate of the standard deviation?
Answer 2.5: $\left(\left(159-21^{2} / 10\right) / 10\right)^{0.5}=3.390$
Question 2.6: Standard error of the sample mean
What is the standard error of the sample mean?
Answer 2.6: $3.573 / 10^{0.5}=1.130$
(Standard error of the mean = standard deviation of the sample / square root of the number of observations)
Question 2.7: Confidence interval, lower bound
What is the lower bound of the 90% two-sided confidence interval for the mean of the normal distribution?

Answer 2.7: $2.100-1.645 \times 1.130=0.241$
(For a confidence level of $90 \%, \alpha=10 \%$, and $z_{\alpha / 2}=1.645$ (table look-up). The lower bound of the two-sided confidence interval for the mean of the normal distribution $=$ mean $-z_{\alpha / 2} \times$ standard error of the mean.)

Question 2.8: Confidence interval, upper bound
What is the upper bound of the 90% two-sided confidence interval for the mean of the normal distribution?
Answer 2.8: $2.100+1.645 \times 1.130=3.959$

