MS Module 7 Hypothesis testing of proportions practice exam questions
(The attached PDF file has better formatting.)
The average proportion of death from a disease is $79 \%$. A study tests whether a drug reduces the proportion of death from the disease. Of 100 subjects who are given the drug, 73 die from the disease. Let $\mu$ be the expected proportion of death from the disease among subjects given the drug.
! The null hypothesis is $\mathrm{H}_{0}$ : the expected proportion of subjects dying $\mu=\mu_{0}=79 \%$
! The one-tailed alternative hypothesis is $\mathrm{H}_{\mathrm{a}}$ : the expected proportion dying $\mu<\mu_{0}$
! The two-tailed alternative hypothesis is $H_{a}$ : the expected proportion dying $\mu \neq \mu_{0}$
The null hypothesis is tested at a $1 \%$ significance level and the true incidence of death with the drug is $68 \%$.
Question 7.1: Sample mean
What is the incidence of death from the disease in the sample?
Answer 7.1: $73 / 100=73 \%$

## Question 7.2: Standard deviation

What is the standard deviation of the incidence of death in the sample if the null hypothesis is true?
Answer 7.2: $(79 \% \times(1-79 \%) / 100)^{0.5}=0.040731$
(variance of proportion $=p(1-p) / n$; use proportion assumed in null hypothesis)

Question 7.3: $z$ value
What is the $z$ value used to test the null hypothesis?
Answer 7.3: $(73 \%-79 \%) / 0.040731=-1.4731$
( $z$ value $=$ sample mean $-\mu_{0}$ (mean assumed in the null hypothesis) / standard deviation of the sample mean)

Question 7.4: $p$ value for one-tailed alternative hypothesis
What is the $p$ value for the one-tailed alternative hypothesis?
Answer 7.4: $\Phi(-1.4731)=0.0704$
Interpolating in the statistical tables:

```
\Phi(1.47) = 0.9292
\Phi(1.48) = 0.9306
\Phi(-1.4731) = 1-( (1.4731-1.47) × 0.9306 + (1.48-1.4731) × 0.9292) / (1.48-1.47) = 0.0704
```

Question 7.5: $p$ value for two-tailed alternative hypothesis

What is the $p$ value for the two-tailed alternative hypothesis?
Answer 7.5: $2 \times 0.0704=0.1408 \quad(0.1407$ if computations carried to more decimal places)

Question 7.6: Expected value and variance of the $z$ value
What are the expected value and variance of the $z$ value if the null hypothesis is true?
Answer 7.6: $\mu=0 ; \sigma^{2}=1$
(If the null hypothesis is true, the $z$ value has a standard normal distribution: mean $=$ zero and variance $=1$ )

## Question 7.7: Standard deviation of sample mean

What is the standard deviation of the sample mean if the true incidence of death with the drug is $68 \%$ ?
Answer 7.7: $(68 \% \times(1-68 \%) / 100)^{0.5}=0.046648$

Question 7.8: Expected value of the $z$ value
What are the expected value of the $z$ value for testing the null hypothesis if the true incidence of death with the drug is $68 \%$ ?

Answer 7.8: $(68 \%-79 \%) / 0.040731=-2.7006$

Question 7.9: Standard deviation of the $z$ value
What is the standard deviation of the $z$ value for testing the null hypothesis if the true incidence of death with the drug is $68 \%$ ?

Answer 7.9: $0.046648 / 0.040731=1.1453$

Question 7.10: Probability of Type II error for one-tailed test
What is the probability of a Type II error for the one-tailed test?
Answer 7.10: The probability of a Type II error when the true proportion is $p^{\prime}$ for the one-tailed test is

$$
\begin{aligned}
& \qquad 1-\Phi\left[\left(p_{0}-p^{\prime}-z_{\alpha} \times\left(p_{0}\left(1-p_{0}\right) / n\right)^{0.5}\right) /\left(\left(p^{\prime}\left(1-p^{\prime}\right) / n\right)^{0.5}\right]\right. \\
& \left(p_{0}-p^{\prime}-z_{\alpha} \times\left(p_{0}\left(1-p_{0}\right) / n\right)^{0.5}\right) /\left(\left(p^{\prime}\left(1-p^{\prime}\right) / n\right)^{0.5}=(79 \%-68 \%-2.326 \times 0.040731) / 0.046648=0.3271\right. \\
& z_{\alpha}=2.326 \text { (lower limit of right } 1 \% \text { tail) } \\
& 1-\Phi(0.3271)=0.3718
\end{aligned}
$$

Interpolating in the statistical tables:

```
\Phi(0.32) = 0.6255
\Phi(0.33) = 0.6293
```

$1-\Phi(0.3271)=1-((0.3271-0.32) \times 0.6293+(0.33-0.3271) \times 0.6255) /(0.33-0.32)=0.3718$

Question 7.11: Probability of Type II error for two-tailed test
What is the probability of a Type II error for the two-tailed test?
Answer 7.11: The probability of a Type II error when the true proportion is $p^{\prime}$ for the two-tailed test is

$$
\begin{gathered}
\Phi\left[\left(p_{0}-p^{\prime}+z_{\alpha / 2} \times\left(p_{0}\left(1-p_{0}\right) / n\right)^{0.5}\right) /\left(\left(p^{\prime}\left(1-p^{\prime}\right) / n\right)^{0.5}\right)\right. \\
-\Phi\left[\left(p_{0}-p^{\prime}-z_{\alpha / 2} \times\left(p_{0}\left(1-p_{0}\right) / n\right)^{0.5}\right) /\left(\left(p^{\prime}\left(1-p^{\prime}\right) / n\right)^{0.5}\right)\right.
\end{gathered}
$$

$\left(p_{0}-p^{\prime}+z_{\alpha / 2} \times\left(p_{0}\left(1-p_{0}\right) / n\right)^{0.5}\right) /\left(\left(p^{\prime}\left(1-p^{\prime}\right) / n\right)^{0.5}=(79 \%-68 \%+2.576 \times 0.040731) / 0.046648=4.6073\right.$
$\left(p_{0}-p^{\prime}-z_{\alpha / 2} \times\left(p_{0}\left(1-p_{0}\right) / n\right)^{0.5}\right) /\left(\left(p^{\prime}\left(1-p^{\prime}\right) / n\right)^{0.5}=(79 \%-68 \%-2.576 \times 0.040731) / 0.046648=0.1088\right.$
$z_{\alpha / 2}=2.576$ (lower limit of right $0.5 \%$ tail)
Interpolating in the statistical tables:
$\Phi(4.6073) \approx 1.000$
$1-\Phi(0.1088)=0.4567$
$\Phi(0.10)=0.5398$
$\Phi(0.11)=0.5438$
$1-\Phi(0.1088)=1-((0.1088-0.10) \times 0.5438+(0.11-0.1088) \times 0.5398) /(0.11-0.10)=0.4567$

Question 7.12: Observations needed for one-tailed test
How many observations are needed for a one-tailed test if $\alpha=1 \%$ and $\beta=5 \%$ ?
Answer 7.12: The number of observations needed for a one-tailed test $=$

$$
\left(\left(z_{\alpha} \times\left(p_{0}\left(1-p_{0}\right)\right)^{0.5}+z_{\beta} \times\left(p^{\prime}\left(1-p^{\prime}\right)\right)^{0.5}\right) /\left(p_{0}-p^{\prime}\right)\right)^{2}
$$

For $\alpha=1 \%$ and $\beta=5 \%$, this equals

$$
\left(\left(2.326 \times(0.79 \times(1-0.79))^{0.5}+1.645 \times(0.68 \times(1-0.68))^{0.5}\right) /(0.79-0.68)\right)^{2}=243.006
$$

The next highest integer is 244 .

Question 7.13: Observations needed for two-tailed test
How many observations are needed for a two-tailed test if $\alpha=1 \%$ and $\beta=5 \%$ ?
Answer 7.13: The number of observations needed for a two-tailed test $=$

$$
\left(\left(z_{\alpha / 2} \times\left(p_{0}\left(1-p_{0}\right)\right)^{0.5}+z_{\beta} \times\left(p^{\prime}\left(1-p^{\prime}\right)\right)^{0.5}\right) /\left(p_{0}-p^{\prime}\right)\right)^{2}
$$

For $\alpha=1 \%$ and $\beta=5 \%$, this equals
$\left(\left(2.576 \times(0.79 \times(1-0.79))^{0.5}+1.645 \times(0.68 \times(1-0.68))^{0.5}\right) /(0.79-0.68)\right)^{2}=272.724$
The next highest integer is 273 .

