Neas-Seminars

TSS module 9 Identifying ARIMA processes


http://33771.hs2.instantasp.net/Topic10182.aspx

By NEAS - 11/11/2010 2:44:29 PM

TSS module 9 Identifying ARIMA processes.

 

Cryer and Chan show how to write an ARIMA(p,1,q) process as a non-stationary ARMA process. Some final exam problems ask you to identify the proper ARIMA process and its parameters.

 

**Question 1.2: ARIMA Process

 

A time series is Yt = 1.4Yt-1 + 0.1Yt-2 – 0.5Yt-3 + et + 0.3et-1 + 0.2et-2

 

What is the process followed by this time series?

 


A.      ARIMA(1,1,1)

B.      ARIMA(2,1,2)

C.      ARIMA(2,1,1)

D.     ARIMA(1,2,1)

E.      ARIMA(2,2,1)

 

Answer 1.2: B

 

Rewrite the ARIMA process as

 

Yt – Yt-1 = 0.4Yt-1 + 0.1Yt-2 – 0.5Yt-3 + et + 0.3et-1 + 0.2et-2

 

= 0.4Yt-1 – 0.4Yt-2 + 0.4Yt-2 + 0.1Yt-2  – 0.5Yt-3 + et + 0.3et-1 + 0.2et-2

 

= 0.4Yt-1 – 0.4Yt-2 + 0.5Yt-2 – 0.5Yt-3 + et + 0.3et-1 + 0.2et-2

 

Wt = 0.4 Wt-1 + 0.5Wt-2 + et + 0.3et-1 + 0.2et-2

 

See equation 5.2.2 on page 92.

 

Intuition: The ARIMA(p,1,q) process is

 

Yt – Yt-1 = ö1 (Yt-1 – Yt-2) + ö2 (Yt-2 – Yt-3) + … + öp (Yt-p – Yt-p-1) + åtè1 åt-1è2 åt=2 – … – èq åt-q

 

Rewrite this as

 

Yt = (1 + ö1) Yt-1 + (ö2ö1) Yt-2 + (ö3ö2) Yt-3 + … + (öpöp-1) Yt-p + + åtè1 åt-1è2 åt=2 – … – èq åt-q

 

The AR(1) process for Yt = Wt has ö1 = 0.4 and ö2 = 0.5, which give

 


 

           1 + ö1 = 1.4

           ö2ö1 = 0.1

           ö2 = –0.5


 

 

These are the coefficients of Yt-k in the original equation. 

 

Jacob: What about the moving average terms?

 

Jacob: The coefficients of the error terms åt-k remain unchanged; they are the negatives of the moving average parameters. 

 

Jacob: What is the procedure for this transformation?

 

Rachel: The sum of the coefficients for the Y terms are equal on both sides of the equation.