Fox Module 4: Bivariate Displays HW


Fox Module 4: Bivariate Displays HW

Author
Message
NEAS
Supreme Being
Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)Supreme Being (6K reputation)

Group: Administrators
Posts: 4.5K, Visits: 1.6K

Module 4: Bivariate Displays

 

(The attached PDF file have better formatting.)

 

Homework Assignment: quantile comparison plots

 

Quantile comparison plots are discussed in Module 3 and are used later in the text. This homework assignment discusses quantile comparison plots, not bivariate displays

 

We compare quantile comparison plots for two distributions:

 


           Figure 3.9 on page 37: A t-distribution with 3 degrees of freedom.

           Figure 3.8 on page 37: A ÷-squared distribution with 2 degrees of freedom.


 

 

Below is a quantile comparison plot for 1,000 random draws from a t-distribution with 3 degrees of freedom.

 

The quantile comparison plot for a t-distribution with 2 degrees of freedom is shaped like an S-curve.

 


 

A.     At the upper tail, are values more or less extreme than in a normal distribution?

B.     At the lower tail, are values more or less extreme than in a normal distribution?

C.    Is the t-distribution with 2 degrees of freedom (i) symmetric thin-tailed, (ii) symmetric thick-tailed, (iii) positively skewed, or (iv) negatively skewed?

 

 


 

Below is a quantile comparison plot for 1,000 random draws from a χ-squared distribution with 2 degrees of freedom.

 

 

The quantile comparison plot for a χ-squared distribution with 2 degrees of freedom is shaped like a convex banana.

 


 

A.     At the upper tail, are values more or less extreme than in a normal distribution?

B.     At the lower tail, are values more or less extreme than in a normal distribution?

C.    Is a ÷-squared distribution with df = 2 (i) symmetric thin-tailed, (ii) symmetric thick-tailed, (iii) positively skewed, or (iv) negatively skewed?

 

 


Attachments
Reply
CalLadyQED
Forum Guru
Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)Forum Guru (66 reputation)

Group: Forum Members
Posts: 62, Visits: 2

What is meant by "extreme"? I don't recall that term being used in any of my stats courses or in the textbook. Does "more extreme" mean a steeper slope (i.e., the derivative is larger at that point)?

[NEAS: Extreme is used in its lay sense, as the distance from the mean in units of standard deviation. An extreme event is many standard deviations away from the mean. Consider a normal distribution vs a t-distribution with 3 degrees of freedom, both of which have a mean of zero and a standard deviation of one. For which distribution is the 99th percentile higher? The t-distribution is thick tailed, so its extreme events (the 99th percentile and the 1st precentile) are further from the mean.]

 

 


GO
Merge Selected
Merge into selected topic...



Merge into merge target...



Merge into a specific topic ID...






Reading This Topic


Login
Existing Account
Email Address:


Password:


Social Logins

  • Login with twitter
  • Login with twitter
Select a Forum....













































































































































































































































Neas-Seminars

Search